

OPEN ABAL
Language Reference 5.1t

Jamie Marshall

ijm@amenesik.com

Abstract

This document provides a language reference including the LTS Display Functions that have

been added to the ABAL Translator and Executer to facilitate the use of the new LTS ESC

sequences.

OPEN ABAL Language Reference Version 5.1t

1

Table of Contents

Introduction .. 8

EVENT INSTRUCTIONS ... 8

ABAL EXECUTION .. 8

ABAL TRANSLATON ... 8

ABAL PUSH POP .. 8

EXA SYS LOG .. 9

TEMPORARY MEMORY USAGE ... 9

32BIT and 64BIT INTEGER CONSTANTS ... 10

ALLOW STOP ... 10

OTR PSEUDO CONSTANTS ... 10

CLASS NAME.. 10

CLASS NUMBER ... 10

OBJECT NAME ... 10

OBJECT NUMBER ... 10

METHOD NAME .. 10

MODULE NAME ... 10

SEGMENT NAME ... 11

PROCEDURE NAME ... 11

#FILE .. 11

#LINE ... 11

#DATE .. 11

#TIME .. 11

#TRUE .. 11

#FALSE ... 11

#WORDSIZE ... 11

#PTRSIZE .. 11

PRINT INSTRUCTIONS .. 12

EXTENDED RGB PAINT ... 12

CICO Screen Functions .. 12

Screen.Foreground.. 12

Description .. 12

Syntax .. 12

Parameters .. 12

Screen.Background ... 13

OPEN ABAL Language Reference Version 5.1t

2

Description .. 13

Syntax .. 13

Parameters .. 13

Screen.Atb ... 13

Description .. 13

Syntax .. 13

Parameters .. 13

Screen.Character ... 13

Description .. 13

Syntax .. 13

Parameters .. 13

LTS Display Functions .. 14

Display Label ... 14

Description .. 14

Syntax .. 14

Parameters .. 14

Example ... 15

Display Image .. 15

Description .. 15

Syntax .. 15

Parameters .. 15

Example ... 16

Display Video... 16

Description .. 16

Syntax .. 16

Parameters .. 16

Example ... 17

Display Pop Up .. 17

Description .. 17

Syntax .. 17

Parameters .. 17

Example ... 17

Display Size .. 17

Description .. 17

Syntax .. 17

Parameters .. 17

OPEN ABAL Language Reference Version 5.1t

3

Example ... 17

Display Font... 17

Description .. 17

Syntax .. 18

Parameters .. 18

Example ... 18

Display Fore ... 18

Description .. 18

Syntax .. 18

Parameters .. 18

Example ... 18

Display Back .. 18

Description .. 18

Syntax .. 18

Parameters .. 18

Example ... 18

Display Color ... 19

Description .. 19

Syntax .. 19

Parameters .. 19

Examples ... 19

Display Upload .. 19

Description .. 19

Syntax .. 19

Parameters .. 19

Examples ... 20

INXS - SQL Database File Access ... 21

Configuration .. 21

MYSQL ... 22

Create File ... 22

Columns .. 23

Query .. 24

Begin ... 24

Commit .. 24

Rollback ... 24

Select ... 24

OPEN ABAL Language Reference Version 5.1t

4

Posit .. 27

Count ... 27

Collect ... 27

Insert ... 28

EVENT (68) .. 28

EVENT (69) .. 29

EVENT (78) .. 29

EVENT (79) .. 29

XML File Access ... 30

Assign .. 30

Open .. 30

Cfile ... 30

Read .. 30

Write ... 31

Close .. 31

JSON File Access .. 32

Library Definition .. 32

Open Json .. 32

Create Json .. 32

Read Json .. 32

Write Json ... 33

Close Json .. 33

PARQUET File Access ... 34

Library Definition .. 34

Initialisation Parquet ... 34

The following options are available: ... 34

Open Parquet .. 35

Create Parquet .. 35

Read Parquet... 35

Parquet Rows .. 35

Parquet Columns ... 35

Parquet Column .. 36

Close Parquet .. 36

Flush Parquet .. 36

Select Parquet ... 36

Where Parquet .. 36

OPEN ABAL Language Reference Version 5.1t

5

ABAL POINTERS ... 36

DECLARATION ... 37

1 Byte Integers .. 37

2 Byte Integers .. 37

4 Byte Integers .. 37

8 Byte Integers .. 37

BCD Strings .. 37

ALPHA NUMERIC Strings ... 38

REDEFINITION of a POINTER ... 38

CREATE .. 38

Syntax .. 38

Examples ... 38

ALTER .. 39

Syntax .. 39

Examples ... 40

REMOVE .. 40

Syntax .. 40

Examples ... 40

FORGET ... 41

Syntax .. 41

ALIAS ... 41

Warning ... 41

VALIDPTR ... 41

ATTACH ... 42

EXAMPLE ... 42

CALL ... 43

EXAMPLES ... 43

DETACH ... 43

PROC PTR .. 43

EXAMPLE ... 43

SEGMENT PTR ... 44

EXAMPLE ... 44

USER PTR ... 44

EXAMPLE ... 44

OBJECT ORIENTED ABAL ... 45

Introduction .. 45

OPEN ABAL Language Reference Version 5.1t

6

DATA ... 45

EXAMPLE STRUCTURE ... 46

EXAMPLE UNION ... 47

MIXED EXAMPLE ... 49

CODE ... 49

STRUCTURED CODE EXAMPLE .. 50

CLASSES ... 53

PUBLIC ... 54

PRIVATE ... 55

INHERIT ... 55

PROTECT .. 55

BASE CLASS .. 55

FRIEND... 56

COMMON .. 56

LIBRARY ... 57

METHOD .. 57

RETURN TYPE .. 58

INLINE .. 59

ROUTINE .. 59

FUNCTION ... 59

OVERLAY.. 60

USER FUNCTION .. 60

CONSTRUCTOR .. 60

DESTRUCTOR ... 60

INDIRECT ... 61

VIRTUAL ... 61

OVERLOAD .. 62

POINTER .. 68

STRICT ... 69

RELAX .. 71

COMETHODS ... 71

EXCEPTION .. 71

INVARIANT .. 72

PRECONDITION ... 74

POSTCONDITION ... 74

Environment Variables .. 76

OPEN ABAL Language Reference Version 5.1t

7

OTR Pragmas ... 77

TOKENSIZE ... 77

KEYWORD .. 77

LOCAL_CONSTANT .. 77

ECHO_ON .. 77

ECHO_OFF ... 77

ECHO ... 77

HEAP .. 77

FILES .. 77

STACK .. 77

MEM .. 78

PAGENUMBER ... 78

APLUS .. 78

KEYBOARD_FLUSH .. 78

ENHANCED .. 78

ERRORS .. 78

OPTIMISE ... 78

SEMAPHORES .. 78

SWAP_BUFFERS .. 79

TRACE .. 79

ANNOUNCE ... 79

IGNORE_CASE ... 79

LIST .. 79

PRIORITY.. 79

WARNINGS .. 79

EDITOR .. 79

ERRORS.. 79

THROW .. 80

SWAPSIZE .. 80

PAGESIZE ... 80

DEFINE ... 80

UNDEF ... 80

OUTPUT ... 80

LABELSIZE .. 80

STYLE ... 80

INITLOCAL ... 80

OPEN ABAL Language Reference Version 5.1t

8

NOFLUSH ... 81

NOINPUT ... 81

EXPORT .. 81

CHARSET .. 81

DIFFERENCES ... 82

ABAL POINTER SIZE ... 82

REGISTER INTEGERS .. 82

CLASS_NAME, OBJECT_NAME and METHOD_NAME ... 82

ANNEXE 1 .. 83

The ABAL CHARACTER Set... 83

ANNEXE 2 .. 84

An XML File Copier .. 84

ANNEXE 3 .. 86

A JSON File Copier ... 86

ANNEXE 4 .. 88

A PARQUET File Example .. 88

Introduction
This document provides a language reference, especially concerning the new functions and features

that have been added to the OPEN ABAL translator OTR64 and the OPEN ABAL runtime EXA64.

EVENT INSTRUCTIONS

ABAL EXECUTION
The new EVENT (666) instruction returns an indication of the capacity of the underlying architecture

of the ABAL EXA as 64bit, 32bit or 16bit.

 ABAL TRANSLATON
The new EVENT (667) instruction returns an indication of the nature of the translated program native

integers as 8 bytes, 4 bytes or 2 bytes representing the 64bit, 32bit and 16bit program architectures

of OPEN ABAL, ABAL 3 and ABAL 1 and 2 respectively.

ABAL PUSH POP
The new EVENT (306) allows the nature of the internal ABAL PUSH POP flag to be set or inspected

during program operation. This integer value bitfield of flags may be set using the environment

variable of the same name ABALPUSHPOP.

The PUSH POP flag allows control over the automated screen PUSH and POP performed around a

LOADGO operation as describe by the following bit field flag operations and is especially required

when screens of the different programs occupy their own individual windows.

OPEN ABAL Language Reference Version 5.1t

9

• 1: PUSH TO FILE, activate the PUSH POP mechanism, to a local disk file in the temporary directory,

firstly a SCREEN PUSH will be performed in the calling program, prior to the launch of a LOAD GO

ABAL program and then the SCREEN POP will be performed on return to the calling program.

• 2: PUSH BEFORE, indicates that the target program of the LOADGO instruction is to perform a

SCREEN POP during its initial startup procedure to retrieve the state of the screen transmitted by

the caller.

• 4: POP AFTER, indicates that the target program of the LOADGO instruction is to perform a screen

PUSH to transmit the state of its screen back to the calling program.

• 8: INHIBIT PUSH COLOUR, indicates that the current foreground and background colours are not

to be pushed and restored via the PUSH POP management file.

• 16: INHIBIT PUSH POSITION, indicates that the current column and line tabulation position values

are not to be pushed and restored via the PUSH POP management file.

In absence of any explicit value being specified, by an environment variable or this event instruction,

this will default to the integer value of 7, namely PUSH TO FILE, PUSH BEFORE and POP AFTER.

EXA SYS LOG
The new EVENT(668) allows the EXA SYSLOG mask to be set and retrieved, controlling the emission of

SYSLOG messages and warnings in special cases of EXA operation. The following constants are defined

controlling the described condition.

Name Value Description

SYSLOG_ASSIGN 1 A SYSLOG warning will be emitted when an ASSIGN
instruction reuses a currently used ASSIGN handle. An
EVENT (77) for the corresponding ASSIGN handle will inhibit
this SYSLOG warning.

SYSLOG_ASSIGN_OPEN 2 A SYSLOG warning will be emitted when an ASSIGN
instruction reuses a currently used ASSIGN handle and the
handle is still in the OPEN state. Closure of the ASSIGN
handle will inhibit this SYSLOG warning.

SYSLOG_LOAD 4 A SYSLOG warning will be emitted when a CHAIN or
LOAD.GO instruction launches a secondary ABAL program.

SYSLOG_PROC 8 A SYSLOG warning will be emitted to signal incorrect values
and types passed as parameters during a procedure CALL.

SYSLOG_CHILD 16 A SYSLOG warning will be emitted during a system call
launched through a LOAD.GO instruction, while waiting for
the CHILD process to terminate. This warning will signal the
various states and conditions that may be encountered.

SYSLOG_CICO 32 A SYSLOG warning will be emitted during CICO output via
PRINT instructions when the low level write operation fails
to output data.

The default value is set to enable all the above SYS LOG messages. The default value can be controlled

by the environment variable EXASYSLOG prior to start-up of the abal EXA runtime.

TEMPORARY MEMORY USAGE
The new EVENT (997) instruction returns the level of current usage of the temporary memory defined

by #MEM.

OPEN ABAL Language Reference Version 5.1t

10

32BIT and 64BIT INTEGER CONSTANTS
The use of 32bit integer constants, and now 64bit integer constants, had been inhibited to prevent

defective dynamic libraries from encountering error due to their inability to use the larger integer

types. The EVENT (998) instruction allows the INTEGER management subsystem to operate correctly

preserving the natural size of all integer constants.

ALLOW STOP
The EVENT (999) may be used to GET and SET the program STOP status. This is used by the ABAL WEB

SERVER known as WASP, to ensure that attached programs do not stop the WEB SERVER operation.

OTR PSEUDO CONSTANTS
This section of the documentation describes the collection of pseudo constants that are recognised

and handled by the OPEN ABAL translator OTR64. These are useful in source management and

maintenance and in case or logging, tracing, and reporting when errors occur during program

execution.

CLASS NAME
This pseudo constant will be replaced by a STRING value containing the name of the current CLASS or

by the SPACE string if no class is currently active.

PRINT=1:CLASS_NAME,TABV(1)

CLASS NUMBER
This pseudo constant will be replaced by an INTEGER value containing the NUMBER of the current

CLASS or by ZERO if no class is currently active.

PRINT=1:CLASS_NUMBER,TABV(1)

OBJECT NAME
This new pseudo constant will be replaced by a STRING value containing the name of the current

OBJECT or by the SPACE string if no object is currently active.

PRINT=1:OBJECT_NAME,TABV(1)

OBJECT NUMBER
This pseudo constant will be replaced by an INTEGER value containing the NUMBER of the current

OBJECT or by ZERO if no object is currently active.

PRINT=1:OBJECT_NUMBER,TABV(1)

METHOD NAME
This new pseudo constant will be replaced by a STRING value containing the name of the current CLASS

METHOD or by the SPACE string if no method is currently active.

PRINT=1:METHOD_NAME,TABV(1)

MODULE NAME
This new pseudo constant will be replaced by a STRING value containing the value specified as the

name of the current MODULE, PROGRAM or LIBRARY translation production unit.

PRINT=1:MODULE_NAME,TABV(1)

OPEN ABAL Language Reference Version 5.1t

11

SEGMENT NAME
This new pseudo constant will be replaced by a STRING value containing either the name of the current

SEGMENT under translation, or its NUMBER.

PRINT=1:SEGMENT_NAME,TABV(1)

PROCEDURE NAME
This new pseudo constant will be replaced by a STRING value containing the name of the current

PROCEDURE under translation.

PRINT=1:PROCEDURE_NAME,TABV(1)

#FILE
This pseudo constant will be replaced by a STRING value containing the name of the source FILE

currently being translated.

PRINT=1:#FILE,TABV(1)

#LINE
This pseudo constant will be replaced by a STRING value containing the LINE number of the source file

currently being translated.

PRINT=1:#LINE,TABV(1)

#DATE
This pseudo constant will be replaced by a STRING value containing the DATE at which the source file

currently was being translated.

PRINT=1:#DATE,TABV(1)

#TIME
This pseudo constant will be replaced by a STRING value containing the TIME at which the source file

currently was being translated.

PRINT=1:#TIME,TABV(1)

#TRUE
This pseudo constant will be replaced by an INTEGER value of 1.

PRINT=1:#TRUE,TABV(1)

#FALSE
This pseudo constant will be replaced by an INTEGER value of 0.

PRINT=1:#FALSE,TABV(1)

#WORDSIZE
This pseudo constant will be replaced by an INTEGER value equal to the ABAL WORD SIZE of the

translator, 2 bytes for 16bit, 4 bytes for 32bit and 8 bytes for 64bit architecture.

PRINT=1:#WORDSIZE,TABV(1)

#PTRSIZE
This pseudo constant will be replaced by an INTEGER value of equal to the ABAL PTR SIZE of the

translator, 5 bytes for 16bit and 32bit and 9 bytes for 64bit architecture.

OPEN ABAL Language Reference Version 5.1t

12

PRINT=1:#PTRSIZE,TABV(1)

PRINT INSTRUCTIONS

EXTENDED RGB PAINT
The standard PAINT instruction, of the PRINT and ASK instructions, now accepts STRING expressions

in addition to the customary integer expressions, as its parameters. When a STRING parameter is

encountered it should respect the extended RGB colour descriptions, of one of the following forms:

• International CSS standard colour name (red, blue, black, white)

• A HASH prefixed 3-byte RGB HEX digit string (#80FF80)

• A standard CSS RGB (integer, integer, integer) clause.

• A standard CSS RGBA (integer, integer, integer, float) clause

CICO Screen Functions
Four new functions have been added allowing the different pieces of residual CICO screen map

information to be returned to the applications, the foreground and background colour, the text

attribute, and the text character code.

The following program example demonstrates the use of these functions:

program "Screen Functions"
dcl c%,l%
dcl f%,b%,a%,t%
segment 0
 For l = 1 to conf(1)
 For c = 1 to conf(2)-1
 Print=1:Tab(c,l),Paint(Mod(c,15),Mod(l,15)),Chr$(Mod(c+l,26)+65)
 Next c
 Next l
 For l = 1 to conf(1)
 For c = 1 to conf(2)-1
 print=1:Tab(c,l),Atb(Screen.Atb(c,l)), ‘
 Paint(Screen.Foreground(c,l), ‘
 Screen.Background(c,l)), ‘
 Chr$(Screen.Chr(c,l))
 Next c
 Next l
eseg 0
end

Screen.Foreground

Description
This instruction will return the integer value of the screen foreground colour at the specified column

and line position.

Syntax
% Screen.Foreground(column%, line%)

Parameters

Column

The integer value of this parameter, between 1 and the limit indicated by CONF(2), will determine the

text column position of the associated line position from the foreground colour will be retrieved and

returned.

Line

The integer value of this parameter, between 1 and the limit indicated by CONF(1), will determine the

text line position of the associated column position from the foreground colour will be retrieved and

returned.

OPEN ABAL Language Reference Version 5.1t

13

Screen.Background

Description
This instruction will return the integer value of the screen background colour at the specified column

and line position.

Syntax
% Screen.Background(column%, line%)

Parameters

Column

The integer value of this parameter, between 1 and the limit indicated by CONF(2), will determine the

text column position of the associated line position from the background colour will be retrieved and

returned.

Line

The integer value of this parameter, between 1 and the limit indicated by CONF(1), will determine the

text line position of the associated column position from the background colour will be retrieved and

returned.

Screen.Atb

Description
This instruction will return the integer value of the screen text attribute at the specified column and

line position.

Syntax
% Screen.Atb(column%, line%)

Parameters

Column

The integer value of this parameter, between 1 and the limit indicated by CONF(2), will determine the

text column position of the associated line position from the text attribute will be retrieved and

returned.

Line

The integer value of this parameter, between 1 and the limit indicated by CONF(1), will determine the

text line position of the associated column position from the text attribute will be retrieved and

returned.

Screen.Character

Description
This instruction will return the integer value of the screen text character code at the specified column

and line position.

Syntax
% Screen.Character(column%, line%)

Parameters

Column

The integer value of this parameter, between 1 and the limit indicated by CONF(2), will determine the

text column position of the associated line position from the text character code will be retrieved and

returned.

OPEN ABAL Language Reference Version 5.1t

14

Line

The integer value of this parameter, between 1 and the limit indicated by CONF(1), will determine the

text line position of the associated column position from the text character code will be retrieved and

returned.

LTS Display Functions
The new LTS (Lightweight Terminal Services) provides a standard CICO Terminal Emulation in a web

browser environment and offers a collection of simple graphical and colour manipulation instructions

that work in collaboration with the standard TEXT and COLOUR planes. in to facilitate the use of the

new LTS ESC sequences for graphic display operations. Each of the following functions performs the

equivalent of the corresponding LTS ESC sequence, but only if the current CICO parameter file

indicates that the new LTS extension functions are available. Otherwise, the instructions will be silently

ignored.

Display Label

Description
This instruction will display a text label within the defined bounding box at the indicted curser position.

Syntax
DisplayLabel(column%, line%, columns%, lines%, height%, font$, align$, fg$, bg$, message$)

Parameters

Column

The integer value of this parameter, between 1 and the limit indicated by CONF(2), will determine the

text column position from which the label will be displayed. If this value is ZERO, or if the value of the

line parameter is ZERO then no positioning will be performed otherwise the corresponding ESC f

sequence, as used by the PRINT TAB instruction, will be issued.

Line

The integer value of this parameter, between 1 and the limit indicated by CONF (1), will determine the

text line position from which the label will be displayed. If this value is ZERO, or if the value of the

column parameter is ZERO then no positioning will be performed otherwise the corresponding ESC f

sequence, as used by the PRINT TAB instruction, will be issued.

Columns

The integer value of this parameter, between 1 and the limit indicated by CONF (2), will determine the

width in text columns of the bounding box within which the label will be displayed. If this value is

ZERO, or if the value of the lines parameter is ZERO then the label will not be displayed.

Lines

The integer value of this parameter, between 1 and the limit indicated by CONF (2), will determine the

height in text rows of the bounding box within which the label will be displayed. If this value is ZERO,

or if the value of the columns parameter is ZERO then the label will not be displayed.

Height

The integer value of this parameter, a reasonable font height value, will determine the ratio of the

label compared to the current font height as calculated for the graphical output window.

Font

The string value of this parameter should provide a valid font family name.

OPEN ABAL Language Reference Version 5.1t

15

Align

The string value of this parameter, from the following set of values (“R”, “L”,”C”), will determine the

alignment of the text of the label within the bounding box.

Fg

The string value of this parameter should provide a valid colour description to be used as the

foreground or text colour of the label.

Bg

The string value of this parameter should provide a valid colour description to be used as the

background or fill colour of the label.

Message

The string value of this parameter will be right trimmed and will provide the text of the label to be

displayed.

Example
Display of a page title label with Arial font and blue text on white background.

DisplayLabel(1,1, Conf(2), 1, 16,”Arial”, “C”, ”blue”, “white”, ”Example of Title Label”)

Display Image

Description
This instruction will display an image file within the defined bounding box at the indicted curser

position.

Syntax
DisplayImage(column%, line%, columns%, lines%, option%, url$)

Parameters

Column

The integer value of this parameter, between 1 and the limit indicated by CONF(2), will determine the

text column position from which the image will be displayed. If this value is ZERO, or if the value of

the line parameter is ZERO then no positioning will be performed otherwise the corresponding ESC f

sequence, as used by the PRINT TAB instruction, will be issued.

Line

The integer value of this parameter, between 1 and the limit indicated by CONF(1), will determine the

text line position from which the image will be displayed. If this value is ZERO, or if the value of the

column parameter is ZERO then no positioning will be performed otherwise the corresponding ESC f

sequence, as used by the PRINT TAB instruction, will be issued.

Columns

The integer value of this parameter, between 1 and the limit indicated by CONF(2), will determine the

width in text columns of the bounding box within which the image will be displayed. If this value is

ZERO, or if the value of the lines parameter is ZERO then the image will not be displayed.

Lines

The integer value of this parameter, between 1 and the limit indicated by CONF(2), will determine the

height in text rows of the bounding box within which the image will be displayed. If this value is ZERO,

or if the value of the columns parameter is ZERO then the image will not be displayed.

OPEN ABAL Language Reference Version 5.1t

16

Option

The integer value of this parameter will provide supplementary display options for the image. Current

this should be set to ZERO (0).

Url

The string value of this parameter provides the URL from which the image to be displayed will be

loaded.

Example
Display of a full screen background image.

DisplayImage(1,1, Conf(2), Conf(1), 0, “https://www.amenesik.com/background.png”)

Display Video

Description
This instruction will display a video within the defined bounding box at the indicted curser position.

Syntax
DisplayVideo(column%, line%, columns%, lines%, option%, url$)

Parameters

Column

The integer value of this parameter, between 1 and the limit indicated by CONF(2), will determine the

text column position from which the video will be displayed. If this value is ZERO, or if the value of the

line parameter is ZERO then no positioning will be performed otherwise the corresponding ESC f

sequence, as used by the PRINT TAB instruction, will be issued.

Line

The integer value of this parameter, between 1 and the limit indicated by CONF(1), will determine the

text line position from which the video will be displayed. If this value is ZERO, or if the value of the

column parameter is ZERO then no positioning will be performed otherwise the corresponding ESC f

sequence, as used by the PRINT TAB instruction, will be issued.

Columns

The integer value of this parameter, between 1 and the limit indicated by CONF(2), will determine the

width in text columns of the bounding box within which the video will be displayed. If this value is

ZERO, or if the value of the lines parameter is ZERO then the video will not be displayed.

Lines

The integer value of this parameter, between 1 and the limit indicated by CONF(2), will determine the

height in text rows of the bounding box within which the video will be displayed. If this value is ZERO,

or if the value of the columns parameter is ZERO then the video will not be displayed.

Option

The integer value of this parameter will provide the following supplementary, combinable display

options for the video.

1) Auto play: when this bit is set the video will start to play when loaded

2) Loop: when this bit is set the video will loop when the end is reached

OPEN ABAL Language Reference Version 5.1t

17

Url

The string value of this parameter provides the URL from which the video to be displayed will be

loaded.

Example
Display of a full screen video.

DisplayVideo(1,1, Conf(2), Conf(1), 0, “https://www.amenesik.com/video.mpg”)

Display Pop Up

Description
This instruction will display the indicated URL in a Pop Up Window.

Syntax
DisplayPopUp(url$)

Parameters

Url

The string value of this parameter provides the URL of the WEB item to be loaded and displayed in a

Pop Up Window.

Example
Display of the LTS session console for the user guest in another pop up window.

DisplayPopUp(“https://www.amenesik.com:9990/openlts/v1/console/guest”)

Display Size

Description
This instruction will re-dimension the LTS CICO Terminal Emulation using the provided column and line

count only if the values are different to the current display dimensions.

Syntax
DisplaySize (columns%, lines%)

Parameters

Columns

The integer value of this parameter, between 1 and a reasonably large value, will determine the width

in text columns of the new display screen.

Lines

The integer value of this parameter, between 1 and a reasonably large value, will determine the height

in text rows of the new display screen.

Example
Re-dimension the text emulation to 132 columns by 40 lines.

DisplaySize(132, 40)

Display Font

Description
This instruction will select the text font family that will be used for subsequent PRINT and ASK

instructions.

OPEN ABAL Language Reference Version 5.1t

18

Syntax
DisplayFont(name$)

Parameters

Name

The string value of this parameter will determine the font family to be used by subsequent Display

Label instructions. By default, this will be the same font family as the underlying CICO text plane.

Example
Set the current Display Label font to Helvetica.

DisplayFont(“Helevtica”)

Display Fore

Description
This instruction will set the foreground text colour that will be used for subsequent PRINT and ASK

instructions.

Syntax
DisplayFore (colour$)

Parameters

Colour

The string value of this parameter will provide a hexadecimal colour code, an RGB or RGBA expression

or a valid colour name.

Example
Set the current foreground to the RGBA value.

DisplayFore (“rgba(125,222,109,0.5)”)

Display Back

Description
This instruction will set the background text colour that will be used for subsequent PRINT and ASK

instructions.

Syntax
DisplayBack (colour$)

Parameters

Colour

The string value of this parameter will provide a hexadecimal colour code, an RGB or RGBA expression

or a valid colour name.

Example
Set the current foreground to the standard colour name “blue”.

DisplayBack (“blue”)

OPEN ABAL Language Reference Version 5.1t

19

Display Color

Description
This instruction allows the corresponding colour palette entry, of the LTS display emulation, to be

defined with the specified colour and alpha values. The palette entry is a standard ABAL colour code

between 0 and 15 inclusive.

Syntax
DisplayColor (number%, red%, green%, blue%, alpha%)

Parameters

Number

The integer value of this parameter determines the index number of the colour palette entry that is

to be redefined. This should be a value between 0 and 15 inclusive.

Red

The integer value of this parameter determines the red fraction of the RGB colour. This should be a

value between 0 and 255 inclusive.

Green

The integer value of this parameter determines the green fraction of the RGB colour. This should be

a value between 0 and 255 inclusive.

Blue

The integer value of this parameter determines the blue fraction of the RGB colour. This should be a

value between 0 and 255 inclusive.

Alpha

The integer value of this parameter determines the degree of opacity of the colour. This should be a

value between 0 and 100 inclusive where 0 represents transparent and 100 fully opaque.

Examples
Set the colour 0, to opaque black.

DisplayColor (0,0,0,100)

Set the colour 0, previously opaque black, to transparent black.

DisplayColor (0,0,0,0)

Display Upload

Description
This instruction allows the File Upload Window of the LTS Terminal Emulation Web page, to be

displayed or to be hidden. This window allows the user to select a file from their local computer for

upload to the LTS Server. The uploaded file will preserve its original name and will be stored in the sub

directory of the currently authenticated user of the main LTS upload folder.

Syntax
DisplayUpload (state%)

Parameters

State

The integer value of this parameter determines if the window is visible or invisible.

OPEN ABAL Language Reference Version 5.1t

20

Examples
Display the Upload Window.

DisplayUpload (1)

Hide the Upload window.

DisplayUpload (0)

OPEN ABAL Language Reference Version 5.1t

21

INXS - SQL Database File Access
The traditional SI, MC, and DB file access instructions of ABAL are now connected to an underlying SQL
database, MYSQL, MARIADB or POSTGRESQL, via the INXS library. This renders ABAL, OPEN, allowing
dynamic data exchange between ABAL applications and Third-Party applications and web servers
without the need to develop complicated interface and file transfer coordination.

Configuration
The characteristics of the implicit database access, used by the traditional, non-database access
methods SI and MC, is described by the collection of environment variables provided to this effect.

INXSTYPE

This environment variable allows the explicit nature of the INXS database engine to be specified.

Only the values MYSQL and PGSQL are implemented in the current version of the INXSQL library

interface. The default value is MYSQL.

INXSHOST

This three-field environment variable provides the host name, the port, and the verbose flag as shown

below. When Transport Layer Security has been activated, the host name portion should be set to the

FQDN of the host on which the Database Engine is running.

Export INXSHOST=”localhost:3306:0”

INXSUSER

This environment variable provides username for the database connection as shown below:

Export INXSUSER=”inxsql”

INXSPASS

This environment variable provides password credential of the username for the database connection

as shown below:

Export INXSUSER=”inxsql”

INXSBASE

This environment variable provides the name of the database for the connection as shown below:

Export INXSBASE=”inxsql”

INXSTTL

This environment variable controls the use of TLS, Transport Layer Security, for the underlying

Database Engine.

Export INXSTLS=On

INXSQLRAW

This environment variable requests that the INXS library trace all SQL requests to the specified output

channel, 1 to standard output, or 2 to standard error. The value of 0 or the absence of this variable

will disactivate request tracing.

Export INXSQLRAW=2

INXSQLERROR

This environment variable requests that the INXS library trace all SQL detailed Error Messages to the

specified output channel, 1 to standard output, or 2 to standard error. The value of 0 or the absence

of this variable will disactivate error message tracing.

Export INXSQLERROR=2

OPEN ABAL Language Reference Version 5.1t

22

INXSQLINSERTPS

This environment variable configures INXS to use prepared statements for the ABAL INSERT Keyword

when set to 1, the default value, and the use of plain text SQL queries when set to 0.

Export INXSQLINSERTPS=1

INXSQLUPDATEPS

This environment variable configures INXS to use prepared statements for the ABAL MODIF Keyword

when set to 1, the default value, and the use of plain text SQL queries when set to 0.

Export INXSQLUPDATEPS=0

MYSQL
The MYSQL Database Engine is currently fully operational for use with OPEN ABAL through the INXS

adapter library. The configuration should be performed to require use of Transport Layer Security,

TLS, for all client server requests.

This is configured during the standard installation deployment of OPEN ABAL as shown below:

1. Modify the /etc/mysql/mysql.conf.d/mysqld.cnf file to include the following four lines at

the end:

ssl_ca=ca.pem

ssl_cert=server-cert.pem

ssl_key=server-key.pem

require_secure_transport=ON

2. Copy your system certificate from the /home/certificates/{domain}/cert.pem to the

/var/lib/mysql/server-cert.pem file.

3. Copy your system private key from the /home/certificates/{domain}/privkey.pem to the

/var/lib/mysql/server-key.pem file.

4. Copy your certification authority chain file from the /home/certificates/{domain}/chain.pem

to the /var/lib/mysql/ca.pem file.

5. Stop the MYSQL server demon

Service mysql stop

6. Start the MYSQL server demon

Service mysql start

Create File
The standard ABAL file creation instruction is to be used for the creation of database tables. It has

been extended to allow the nature of SI / MC files to be set to MEMORY or NORMAL using the

following syntax.

 CFILE=handle,D=256,K=8:Next,error

Creates a normal Table with 256-byte data record and an 8-byte binary primary index.

CFILE=handle,MD=256,K=8:Next,error

Creates a MEMORY Table with 256-byte data record and an 8-byte binary primary index.

OPEN ABAL Language Reference Version 5.1t

23

The usual primary key options of LK, RK and K allow the nature of the primary index to be specified.

When set to K, the primary index will be BINARY, whereas the primary index will be a STRING type for

the LK and RK key options.

Columns
The traditional column descriptions provided by the ABAL KEY instruction types, to ensure total
compatibility with the laxist approach previously taken with Criteria, are simply binary data types,
which make the use of the data rather ungainly from other applications more accustomed to the richer
data types that are available to them via SQL. To allow a finer control over integration with third party
application databases, the KEY types available to the ABAL programmer have been extended as shown
below.

BINARY STRING

This is the traditional, and default, Alpha Numeric KEY type prevalent in most ABAL applications and
described by the following KEY instruction.

KEY=handle,”name”,length[,A]:Next,error

NUMERIC

This is used for the 8bit and 16bit integer types, # and %, of the ABAL language, and described by the
following KEY instruction. The difference between 8bit and 16bit integers will be determined solely by
the expressed length value.

KEY=handle,”name”,length,N:Next,error

BCD

This is used by both the fixed and floating point, BCD Numerical variables of the ABAL language, and
described by the following KEY instruction. The optional decimals indicate the number digits required
after the decimal point.

KEY=handle,”name”,length,B[,decimals]:Next,error

LONG

This is used for the LONG 32bit, integer variables of the ABAL language, and described by the following
KEY instruction. It could have been determined from the length of an N type KEY if it were not that
these are also ways of expressing a BCD type KEY with no decimal portion.

KEY=handle,”name”,length,L:Next,error

HUGE

This new KEY data type is used for the HUGE 64bit, integer variables of the ABAL language, and
described by the following KEY instruction.

KEY=handle,”name”,length,H:Next,error

STRING

This new KEY data type is to be used for Alphanumeric String types that will be stored in the database
column using UTF8 encoding.

KEY=handle,”name”,length,S:Next,error

FLOAT

This new KEY data type is to be used when the database column is known to be a float value. The value
received by the ABAL application will be store in a BCD variable. The length or 4 will be interpreted to
represent a FLOAT value while a length of 8 will be used to represent a DOUBLE value.

OPEN ABAL Language Reference Version 5.1t

24

KEY=handle,”name”,length,F:Next,error

Query
This new instruction has been added to allow a pure SQL statement to be submitted to the database

connection without first being processed by the standard “PSEUDO SQL WHERE” statement parser.

This allows bulk operations such as DELETE and UPDATE to be performed without requiring a POSIT /

DOWN / DELETE or POSIT / DOWN / MODIF type construction to be employed. This instruction does

not allow DATA / ROW / COLUMN retrieval. The statement should be a complete SQL statement

including the verb and TABLE clause.

INXSQUERY=handle, statement: Next, error

The following examples demonstrate the types of statements.

INXSQUERY=handle, “DELETE FROM clients where Status=0”: Next, error

INXSQUERY=handle, “UPDATE clients set Status=1 WHERE Status= 0”: Next, error

Begin
This instruction allows the ABAL application to start an explicit transaction on the database associated

with the corresponding file handle. If the file has been assigned as an MC file, then the implicit

database will be used otherwise if the file is a database file, then the assigned database will be used.

INXSBEGIN=handle : Next, error

Commit
This instruction allows the ABAL application to close an open transaction on the database associated

with the corresponding file handle and accept any pending changes. If the file has been assigned as an

MC file, then the implicit database will be used otherwise if the file is a database file, then the assigned

database will be used.

INXSCOMMIT=handle : Next, error

Rollback
This instruction allows the ABAL application to cancel an open transaction on the database associated

with the corresponding file handle and abandon any pending changes. If the file has been assigned as

an MC file, then the implicit database will be used otherwise if the file is a database file, then the

assigned database will be used.

INXSROLLBACK=handle : Next, error

Select
This new instruction has been added to allow an SQL WHERE statement to be submitted to the

database connection, in the context of the TABLE described by the file handle, without processing by

the standard “PSEUDO SQL WHERE” statement parser. This allows standard SELECT operations to be

performed without requiring a POSIT / DOWN type construction to be employed. This instruction

allows DATA / ROW / COLUMN retrieval. The columns to be retrieved are described by the COLUMN

LIST string parameter, or expression, after the query expression containing the WHERE clause.

COLUMN LIST may be a comma separated list of simple COLUMN names, functions on COLUMN

names, or any valid combination. If a COLUMN value is to be returned as well as a function of the same

COLUMN, then the simple COLUMN name must precede the function of the COLUMN name. In all

cases, where a value returned is a function of a COLUMN name, the size and type of the result will be

OPEN ABAL Language Reference Version 5.1t

25

the size and type of the corresponding column. This can cause integer overflow when summating short

integer columns.

INXSSELECT=handle, statement, column_list : Next, error, records, result

The first example demonstrates a simple column extraction.

Proc ExampleOne(handle%)

Dcl error%

Ptr result$(1)

Dcl counter%

Dcl question$=1024

Dcl columns$=1024

Dcl rowbuffer$=128

Field=M,rowbuffer

 Dcl Name$=32

 Dcl Town$=32

 Dcl Email$=64

Field=m

Endloc

Question = “where Status=0”

Columns = “NAME, TOWN, EMAIL”

Forget result

INXSSELECT=handle, question, columns: Next, error, counter, result

While (counter > 0)

 Rowbuffer = result(counter)

 Print=1:Name, Town, Email, Tabv(1)

 counter = counter – 1

Wend

Remove result

EndProc

Second example shows an extraction of columns using a nested SELECT expression and the Pseudo

Column OID representing the primary key of the record.

Proc ExampleTwo(handle%)

Dcl error%

Ptr result$(1)

Dcl counter%

Dcl question$=1024

Dcl columns$=1024

Dcl rowbuffer$=80

Field=M,rowbuffer

 Dcl Oid$=20

 Dcl Label$=58

 Dcl Qty=12

OPEN ABAL Language Reference Version 5.1t

26

Field=m

EndLoc

Question = “Where ID IN (Select ARTID from sales)”

Columns = “OID, LABEL, QTY”

Forget result

INXSSELECT=handle, question, columns: Next, error, counter, result

While (counter > 0)

 Rowbuffer = result(counter)

 Print=1:Oid, Label, Qty, Tabv(1)

 counter = counter – 1

Wend

Remove result

EndProc

The third example shows an extraction of a function on a column value. Notice that the simple

COLUMN name must precede the MAX and MIN functions of the same column name.

Proc ExampleThree(handle%)

Dcl error%

Ptr result$(1)

Dcl counter%

Dcl question$=1024

Dcl columns$=1024

Dcl rowbuffer$=96

Field=M,rowbuffer

 Dcl Name$=32

 Dcl MaxName$=32

 Dcl MinName$=32

Field=m

Endloc

Question = “where Status=0”

Columns = “NAME, MAX(NAME), MIN(NAME)”

Forget result

INXSSELECT=handle, question, columns: Next, error, counter, result

While (counter > 0)

 Rowbuffer = result(counter)

 Print=1:Name, MaxName, MinName, Tabv(1)

 counter = counter – 1

Wend

Remove result

EndProc

In each of the preceding examples, it should be noted that the display of the results is performed in

reverse order and is responsible for the apparent inversion of the ORDER BY statement. Note that the

OPEN ABAL Language Reference Version 5.1t

27

storage memory allocated to the pointer result should be released using the REMOVE instruction

when the selection of column values is no longer required.

Posit
This standard instruction expects a standard WHERE statement that will be processed by the

traditional “PSEUDO SQL WHERE” statement parser and all COLUMN names will be checked against

KEY definitions. An SQL WHERE clause will be reconstructed by INXSQL for extraction of all columns of

matching rows, and submitted to the database connection, in the context of the TABLE described by

the file handle of the POSIT.

POSIT={handle},{question},{option}:{error},{counter}

• The {handle} parameter provides the number of the ASSIGN table entry of the SQL TABLE for the

POSIT.

• The {question} parameter provides the “PSEUDO SQL WHERE” clause or a traditional SI/MC/BD

type clause (without the preceding WHERE term).

• The {option} may be (S) to indicate that an INDEX is not to be used for the selection and a

sequential search will be used instead. The (U) option will signal an error 30 since it is impossible

to select fields other than the specified fields within a Distinct clause. For distinct record selection

the INXS SELECT function should be used instead.

• The {error} parameter references an optional standard error management vector comprising a

label and an error variable.

• The {counter} will be set to 1 or 0 corresponding to the presence of 1 or more or ZERO responses.

Count
This standard instruction expects a standard WHERE statement that will be processed by the

traditional “PSEUDO SQL WHERE” statement parser and all COLUMN names will be checked against

KEY definitions. An SQL WHERE clause will be reconstructed by INXSQL and submitted to the database

connection, in the context of the TABLE described by the file handle of the COUNT.

COUNT={handle},{question},{option}:{error},{counter}

• The {handle} parameter provides the number of the ASSIGN table entry of the SQL TABLE for the

POSIT.

• The {question} parameter provides the “PSEUDO SQL WHERE” clause or a traditional SI/MC/BD

type clause (without the preceding WHERE term).

• The {option} may be (U) to indicate that the COUNT should eliminate duplicate values. In this case

the COLUMN names detected in the QUESTION will be used to construct explicit DISTINCT sub-

terms for the COUNT clause. When (U) is not specified the COUNT(*) clause is used.

• The {error} parameter references an optional standard error management vector comprising a

label and an error variable.

• The {counter} will be set to the number of records that match the selection criteria. This variable

should be of type large enough to receive the resulting value.

Collect
This standard instruction expects a standard WHERE statement that will be processed by the

traditional “PSEUDO SQL WHERE” statement parser and all COLUMN names will be checked against

KEY definitions. An SQL WHERE clause will be reconstructed by INXSQL for extraction of the PRIMARY

INDEX of matching rows, and submitted to the database connection, in the context of the TABLE

OPEN ABAL Language Reference Version 5.1t

28

described by the file handle of the COLLECT. The PRIMARY INDEX values will be collected from the

RESULT set and returned as an array of index length strings, one for each row of the result.

COLLECT={handle},{question }:{error},{counter},{pointer}

• The {handle} parameter provides the number of the ASSIGN table entry of the SQL TABLE for the

POSIT.

• The {question} parameter provides the “PSEUDO SQL WHERE” clause or a traditional SI/MC/BD

type clause (without the preceding WHERE term).

• The {error} parameter references an optional standard error management vector comprising a

label and an error variable.

• The {counter} parameter variable will be set to indicate the number of rows in the response

pointer array.

• The {pointer} parameter variable must be an ABAL PTR variable that has been defined as an ARRAY

of STRING elements. The dimensions of the string variable and the number of elements will be

reinitialised during the implicit CREATE {pointer} ({index_length},{row_count}) instruction

performed when at least one matching row is found.

The COLLECT instruction provides a powerful alternative to the traditional COUNT/POSIT WHILE

DOWN constructions that were necessary before. An example of a standard COLLECT construction can

be seen in the code snippet below.

DCL E%, ROW:, NB:

PTR P$=1(1)

DCL BUFFER$=256

COLLECT=1,”SOLDE > 0”:Next,E, NB, P

IF ((E = 0) AND (NB > 0))

 FOR ROW = 1 to NB

 SEARCH=1,P(ROW),/FF:Next,E,BUFFER

 NEXT ROW

 REMOVE P

ENDIF

Note that the storage memory allocated to the pointer P should be released using the REMOVE

instruction when the collection of primary indexes is no longer required.

Insert
The INSERT instruction allows new records to be created for SI, MC and DBMC files. Each call to the

instruction will perform an atomic SQL INSERT statement to be sent to the remote SQL server. This

mode, the non-buffered safety mode, allows multiple applications to insert records into the same

database from different host locations. Two EVENT functions have been added to allow the INSERT

buffering mechanisms to be activated and disabled as required by the application, on a “table to table”

basis.

EVENT (68)
This instruction allows a specific ASSIGN table to requested to use BUFFERED mode for all subsequent

INSERT instructions.

ASSIGN=1, “mytable”, MC, WR: NEXT, e, buffer

OPEN=1: NEXT, e

OPEN ABAL Language Reference Version 5.1t

29

EVENT (68) = 1

INSERT=1, primary, /01: NEXT, e, data

The size of the INSERT buffer will be as indicated by the corresponding GLOBAL VARIABLE of the

database motor. Buffered INSERT data will be flushed to the remote database engine prior to all other

MC and SI file instructions, for the same table, thus ensuring a consistent image for the application

employing the INSERT buffering technique.

EVENT (69)
This instruction disables use of the BUFFERED mode for the specified ASSIGN table for all subsequent

INSERT instructions.

INSERT=1, primary, /01: NEXT, e, data

EVENT (69) = 1

Buffered INSERT data, for the specified table, will be flushed to the remote database engine during

execution of this instruction. If an ERROR 81 condition is raised by the underlying flush operation, then

an ERROR 81 will be raised that may be caught by an ON [LOCAL] ERROR GOTO &LABEL,VARIABLE type

instruction. If no ERROR trap has been positioned then the PROGRAM will be terminated.

EVENT (78)
This instruction allows the size of the INSERT BUFFER to be specified, in KB, prior to activation of

INSERT buffering using the above-described EVENT (68) for an ASSIGN handle.

ASSIGN=1, “mytable”, MC, WR: NEXT, e, buffer

OPEN=1: NEXT, e

EVENT (78) = 1000 ; specifies the size of the INSERT buffer as one thousand 1K blocks

EVENT (68) = 1 ; activates INSERT buffering for the ASSGN handle 1

INSERT=1, primary, /01: NEXT, e, data

If this value is set to ZERO, the default condition, then the size of the INSERT buffer will be set as

indicated by the corresponding GLOBAL VARIABLE of the database motor. Buffered INSERT data will

be flushed to the remote database engine prior to all other MC and SI file instructions, for the same

table, thus ensuring a consistent image for the application employing the INSERT buffering technique.

EVENT (79)
This instruction allows the maximum size of a temporary MEMORY TABLE to be specified in terms of

the number of ROWS. This must be set prior to the corresponding DFILE instruction for SI, MC and

MCDB files, otherwise the default value of the database engine will be used.

EVENT (79) = 200000 ; sets the maximum row count to 200 thousand rows

CFILE=1,MD=100,LK=10:Next,e ; creates a temporary MEMORY TABLE

When the limit is reached, an ERROR 1114 will be raised.

OPEN ABAL Language Reference Version 5.1t

30

XML File Access
This section of the OPEN ABAL documentation describes the XML file interface that allows you to read

and write XML formatted files. A complete example of an XML file copier program can be found in the

Annexe of this document.

Assign
The standard ASSIGN instruction is used to declare the use of a file in XML mode.

Assign=handle,name,XML[,WR]:Next,error

The WR option is required if you intend to create a new file otherwise it is not required for reading

files.

Open
When opening an XML file for input, the standard OPEN instruction should be used.

Open=handle:Next,error

Cfile
When opening a new XML file for writing, the CFILE instruction should be used.

Cfile=handle:Next,error

Read
The XML information can be retrieved, sequentially, using the READ instruction, with each operation

returning the next element, attribute, or value in turn.

Read=handle,/60:Next,error, buffer, len(buffer)

The structure of the buffer, submitted to the READ instruction, should be defined as follows:

Dcl buffer$=MAXBUFSIZE

Field=m,buffer

 Dcl type%

 Dcl length%

 Dcl value$=MAXBUFSIZE-4

Field=m

The ‘type’ member of this structure will return a code indicating the nature of the data, corresponding

to the following list:

1. Open Element. In this case the value returned will be the name of the element.

2. Attribute Name. In this case the value returned will be the name of the attribute.

3. Attribute Value. In this case the value returned will be the value of the attribute.

4. Close Element. In this case, a value returned will be the name of the element that is closing. If

no value is returned, then the element did not have any content and the name is the name of

the last opened element.

5. Element Text. In this case each value returns a portion of the text data of the element

content.

Each subsequent call to READ will return the next piece of information in order.

The READ instruction may also be used to retrieve the XML header information, name the VERSION,

the CHARSET, and an eventual STYLESHEET name, using the following read codes:

OPEN ABAL Language Reference Version 5.1t

31

• /0061 : Returns the XML Version value

• /0062 : Returns the XML Charset value

• /0063 : Returns the XML Style information, if any is available.

The retrieval of this information should be performed after the first standard READ operation, since

the XML header will not have been parsed until the first sequential read has been performed.

Write
Writing XML data is perfectly symmetrical with the XML file READ approach using the standard

WRITE codes as follows.

The XML information can be written, sequentially, using the WRITE instruction, with each operation

formatting on output the next element, attribute, or value in turn.

Write=handle,/A0:Next,error, buffer, len(buffer)

The structure of the buffer, submitted to the WRITE instruction, should be defined as for the READ

instruction:

Dcl buffer$=MAXBUFSIZE

Field=m,buffer

 Dcl type%

 Dcl length%

 Dcl value$=MAXBUFSIZE-4

Field=m

The ‘type’ member of this structure should provide a code, identical to the READ instruction, indicating

the nature of the data, corresponding to the following list:

1. Open Element. In this case the value to be written will be the name of the new element.

2. Attribute Name. In this case the value to be written will be the name of the attribute.

3. Attribute Value. In this case the value to be written will be the value of the last attribute.

4. Close Element. In this case, the value should be proved will be the name of the element that

is closing.

5. Element Text. In this case each value delivers a portion of the text data for the element

content.

Each subsequent call to WRITE will submit the next piece of information in order.

The WRITE instruction may also be used to submit the XML header information, name the VERSION,

the CHARSET, and an eventual STYLESHEET name, using the following WRITE codes:

• /00A1 : Writes the XML Version value

• /00A2 : Writes the XML Charset value

• /00A3 : Writes the XML Style information.

This information can be written at any moment prior to closure of the file.

Close
When you have finished reading or writing your XML file you should call the close instruction.

Close=handle:Next,error

OPEN ABAL Language Reference Version 5.1t

32

JSON File Access
This section of the OPEN ABAL documentation describes the new ABAL JSON Dynamic Library interface

that allows you to read and write JSON formatted files directly from ABAL. A complete example of a

JSON file copier program can be found in the Annexe of this document.

The contents of the dynamic library description file can be seen below.

version = 1

runtime = "json"

%openjson($,%)

%createjson($,%)

%readjson(%,$,%)

%writejson(%,%,$,%)

%closejson(%)

end

Library Definition
The ABAL program should include the ABAL JSON Dynamic Library definition file.

#use “abaljson.def”

This may be replaced, in a Object Oriented approach, by using a class derived from the json_client

class which encapsulates the dynamic library interface.

Open Json
This dynamic library function allows a JSON file to be opened for input. The first parameter is the name

of the file, the second parameter is the length of the file name parameter. The function returns an

integer result which will be greater than zero if successful.

Dcl handle%

Handle = openjson(filename,len$(filename))

Create Json
This dynamic library function allows a JSON file to be opened for output. The first parameter is the

name of the file, the second parameter is the length of the file name parameter. The function returns

an integer result which will be greater than zero if successful.

Dcl handle%

Handle = createjson(filename,len$(filename))

Read Json
The JSON information can be retrieved, sequentially, using the READ instruction, with each

operation returning the next element, attribute, or value in turn.

Type = readjson(handle,buffer, Len(buffer))

The buffer submitted to the READJSON instruction, should be a simple string type and sufficiently long

for the reception of the largest names and values anticipated.

The ‘type’ value returns a code indicating the nature of the data, corresponding to the following list:

0. NULL. This will be returned when the end of the JSON tree has been encountered.

1. Name. In this case the value returned will be the name of the element.

OPEN ABAL Language Reference Version 5.1t

33

2. Value. In this case the value returned will be the string of numerical value associated with the

recently returned name.

3. Structure. This type will be returned to indicate the start of a structured of complex value. The

value will be empty.

4. Array Element. This type will be returned to indicate the start of a Array of values or structured

of complex values. The value will be empty.

5. Close. This type will be returned to indicate the closure of the current complex value, either a

structure or an array.

6. Error. This type will be returned to signal an error during the JSON parsing operation.

Each subsequent call to READ will return the next piece of information in order.

Write Json
Writing JSON data is perfectly symmetrical with the JSON file READ approach using the types to

signal the nature of the data being written.

The JSON information can be written, sequentially, using the JSON WRITE instruction, with each

operation formatting on output the next structure, array or simple name value pair, in turn.

Type = writejson(handle, type, buffer, len(buffer))

As for the JSON READ instruction the structure of the buffer is a simple string value.

The ‘type’ parameter should provide a code, identical to the READ instruction, indicating the nature

of the data, corresponding to the following list:

1. Name. In this case the value returned will be the name of the element.

2. Value. In this case the value returned will be the string of numerical value associated with the

recently returned name.

3. Structure. This type will be returned to indicate the start of a structured of complex value. The

value will be empty.

4. Array Element. This type will be returned to indicate the start of a Array of values or structured

of complex values. The value will be empty.

5. Close. This type will be returned to indicate the closure of the current complex value, either a

structure or an array.

Each subsequent call to WRITE will submit the next piece of information in order.

Close Json
When you have finished reading or writing your JSON file you should call the close instruction.

Handle = jsonclose(handle)

OPEN ABAL Language Reference Version 5.1t

34

PARQUET File Access
This section of the OPEN ABAL documentation describes the new ABAL PARQUET Dynamic Library

interface that allows you to read and write PARQUET formatted files directly from ABAL. A complete

example of a PARQUET file writer and reader program can be found in the Annexe of this document.

The contents of the dynamic library description file can be seen below.

version = 1

runtime = "parquet"

%parquetinit($,%,$,%)

%parquetcreate($,%)

%parquetcolumn(%,%,$,%,%,%)

%parquetcolumns(%)

%parquetwrite(%,$,%)

%parquetflush(%)

%parquetopen($,%)

%parquetrows(%)

%parquetread(%,&,$,%)

%parquetclose(%)

%parquetselect(%,$,%)

%parquetwhere(%,$,%)

end

Library Definition
The ABAL program should include the ABAL JSON Dynamic Library definition file.

#use “abalparquet.def”

This may be replaced, in an Object-Oriented approach, by using a class derived from the

parquet_client class which encapsulates the PARQUET dynamic library interface.

Initialisation Parquet
This dynamic library function allows configuration of operational parameters of the PARQUET library,

and especially when creating new PARQUET files. The name of the option and its length should be

provided by the first two parameters. The value of the option and its length should be provided by the

last two parameters.

Dcl handle%

Handle = parquetinit(name,len$(name),value,len$(value))

The following options are available:

• ROWGROUP: The value of this option should be an integer value indicating the number of

rows to be generated per row group. The default value is 4094 which is a good compromise

between speed and size. The larger the value, the more rows that will be buffered in memory

during read and write operations. The smaller the value, the greater the fragmentation of the

file and the more file space dedicated to the row management.

• FRAGMENT: The value of this option should be either “TRUE3 or “FALSE”. By default,

fragmentation is disactivated. When fragmentation has been activated, individual columns

OPEN ABAL Language Reference Version 5.1t

35

will be stored in individual PARQUET data files with the main PARQUET file storing the FILE

METADATA.

• COLUMN: The string value of this option should be either “REQUIRED” or “OPTIONAL”

dictating the default nature of new columns subsequently created for new tables by the

library. The default value for this option is “REQUIRED”.

• ENCODING: The string value of this option should be one of the following:

o NONE

o PLAIN

o RLE

o HYBRID

o BITPACKED

The default value for this option is “HYBRID”.

Open Parquet
This dynamic library function allows a PARQUET file to be opened for input or append. The first

parameter is the name of the file, the second parameter is the length of the file name parameter. The

function returns an integer result which will be greater than zero if successful.

Dcl handle%

Handle = parquetopen(filename,len$(filename))

Create Parquet
This dynamic library function allows a PARQUET file to be created for output. The first parameter is

the name of the file, the second parameter is the length of the file name parameter. The function

returns an integer result which will be greater than zero if successful.

Dcl handle%

Handle = parquetcreate(filename,len$(filename))

Read Parquet
This dynamic library function allows the row of data identified by the ROW parameter to be retrieved

from the PARQUET file identified by the HANDLE parameter. If the ROW requested is greater than the

number of rows in the file then the READ will return a ZERO result, other wise a TRUE value will be

returned, and the ROW data will be stored in the buffer provided.

State = parquetread(handle, row, buffer, Len(buffer))

The buffer submitted to the PARQUETREAD instruction, should be a simple string type and sufficiently

long for the reception of the largest row anticipated. If the buffer is too small, then a ZERO response

will be returned but the buffer will contain the truncated data.

Parquet Rows
This dynamic library function returns the current row count of the PARQUET file identified by the

HANDLE parameter. This may be a file opened for reading or for writing.

Row_count = parquetrows(handle)

Parquet Columns
This dynamic library function returns the current column count of the PARQUET file identified by the

HANDLE parameter. This may be a file opened for reading or for writing.

Column_count = parquetcolumns(handle)

OPEN ABAL Language Reference Version 5.1t

36

Parquet Column
This dynamic library function allows a new column definition to be added to a file that is being created.

The complete set of columns required should be created before outputting any row data.

State = parquetcolumn(handle, type, name, len$(name),length, extra)

The type should be one of the following integer values:

1. PARQUET_INT8

2. PARQUET_INT16

3. PARQUET_INT32

4. PARQUET_INT64

5. PARQUET_FLOAT

6. PARQUET_DOUBLE

7. PARQUET_STRING

The length should match the size of the different data types and the extra value may specify the

fractional digits for the numerical types. The function will return ZERO on failure or the new column

count on success.

Close Parquet
This dynamic library function allows a PARQUET that was opened for input, to be closed.

Dcl handle%

Handle = parquetclose(handle%)

Flush Parquet
This dynamic library function allows a PARQUET that was opened for output, to be flushed to storage

and closed.

Dcl handle%

Handle = parquetflush(handle%)

Select Parquet
This dynamic library function allows the comma separated list of collection of column names to be

specified for retrieval by subsequent Parquet Read operations.

State = parquetselect(handle, buffer, Len(buffer))

The column selection will remain positioned until the file is closed or flushed.

Where Parquet
This dynamic library function allows the complex record selection expression to be specified for

retrieval by subsequent Parquet Read operations.

State = parquetwhere(handle, buffer, Len(buffer))

The selection expression will remain positioned until the file is closed or flushed.

ABAL POINTERS
This section of this documentation will provide precise information about ABAL Pointers, the way they

are to be used and the way they are managed during the lifetime of an ABAL program.

OPEN ABAL Language Reference Version 5.1t

37

Pointers were added to ABAL in version 2 of the language and allow the extension of the total ABAL

variable space, accessible to the ABAL PROGRAM, almost indefinitely.

Pointers were designed, from the outset, to be useable in the same way as a standard variable of the

same type in all expressions and statements which do not rely on memory underflow or memory

overflow size effects.

Pointers may be declared in both GLOBAL and LOCAL variables spaces. Pointers are to be declared

with explicit type, length, and dimensions, where appropriate.

Pointers may be declared in FIELD redefinition expressions of both standard variables and the regions

of memory to which a base pointer variable has been pointed or directed.

Pointers may be created, to point to blocks of allocated memory or may be aliased to point to existing

variables or to other allocated pointer zones.

DECLARATION
The following examples shows the declaration of all types of pointer variables. In all cases the

dimensions correspond to the resulting variable type. It is not possible in ABAL to create an ARRAY of

pointers variables.

In each of the following examples, each pointer variable will occupy a fixed amount of space in the

corresponding memory area. This will be 5 bytes in ABAL 2 and ABAL 3 programs (16 and 32-bit

execution mode) and has been increased to 9 bytes in ABAL 64. In both cases the initial byte will

contain a flag which indicates the nature of the pointer and the remaining 4 or 8 bytes will contain the

actual memory address.

1 Byte Integers
PTR b#

PTR bb#(16)

PTR bbb#(16,16)

2 Byte Integers
PTR c%

PTR cc%(16)

PTR ccc%(16,16)

4 Byte Integers
PTR c:

PTR cc:(16)

PTR ccc:(16,16)

8 Byte Integers
PTR c&

PTR cc&(16)

PTR ccc&(16,16)

BCD Strings
PTR n

PTR nn(16)

PTR nnn(16,16)

OPEN ABAL Language Reference Version 5.1t

38

PTR m=12

PTR mm=12(16)

PTR mmm=12(16,16)

ALPHA NUMERIC Strings
PTR s$

PTR ss$(16)

PTR sss$(16,16)

PTR t$=256

PTR tt$=256(16)

PTR ttt$=256(16,16)

REDEFINITION of a POINTER
This example shows the redefinition of a pointer variable with consecutive declarations of each of the

different fundamental types and finally the definition of a pointer variable to a block of the same size

as the base region.

PTR buffer$=256

FIELD=M, buffer

DCL b#

DCL c%

Dcl i:

Dcl h&

DCL n

DCL s$

PTR p$=256

CREATE
This instruction is used to create a newly allocated memory block that will be accessible through the

associated pointer variable.

Syntax
The complete syntax of the CREATE instruction is shown below.

CREATE {pointer_name} [({variable_length} [, {first_dimension}] [, {second_dimension}])]

Where:

• The term {pointer_name} must be the name of a variable that has been declared using the PTR

keyword.

• The term {variable_length} represents the resulting integer value of a constant integer expression

to be used as the length of a BCD or STRING type variable.

• The term {first_dimension} represents the resulting integer value of a constant integer expression

to be used as the size of the first dimension of an ARRAY type variable.

• The term {second_dimension} represents the resulting integer value of a constant integer

expression to be used as the size of the second dimension of an ARRAY type variable.

Examples
PTR p$

CREATE p

OPEN ABAL Language Reference Version 5.1t

39

This first example will allocate a memory block of fifteen characters that will be initialised with space

characters and accessible using the pointer “p”.

PTR p$

CREATE p(1000)

This second example will allocate a memory block of one thousand characters that will be initialised

with space characters and accessible using the pointer “p”. The declaration of the pointer will be

“adapted” by the instruction create to become a pointer to a string of one thousand characters long.

PTR p$(5)

CREATE p

This third example will allocate a memory block of five times fifteen characters that will be initialised

with space characters and accessible using the pointer “p”. The memory will be accessible through “p”

as an array of five, fifteen-byte strings.

PTR p$(1)

CREATE p(100,10)

This fourth example will allocate a memory block of ten times one thousand characters that will be

initialised with space characters and accessible using the pointer “p”. The memory will be accessible

through “p” as an array of ten, thousand-byte strings. The declaration of the pointer will be “adapted”

by the instruction create to become a pointer to an array of ten strings of one thousand characters

long.

In each of the preceding examples where the pointer declaration has been adapted, this adaptation

will only be preserved for the duration of the variable description table. Local variable tables may lose

adaptations between procedure calls depending on the actual operational environment in which the

program is running. Subsequently it is good practice to preserve the dimensions of pointers that have

been adapted in this way, using traditional DCL type variables to store the length and array

dimensions, and to explicitly set the adaptation using the ALTER instruction, provided to allow this to

be performed safely, quickly, and easily.

ALTER
This instruction is provided to allow the dimensions of a pointer variable, that are stored in a local or

global variable table description, to be “adapted” or “altered” to correspond to the known and

preserved dimensions of the pointer as established by a CREATE instruction but may have been lost

due to variable table refresh operations that may be performed during SEGMENT load and return or

PROCEDURE call and exit instructions.

Syntax
The complete syntax of the CREATE instruction is shown below.

ALTER {pointer_name} [({variable_length} [, {first_dimension}] [, {second_dimension}])]

Where:

• The term {pointer_name} must be the name of a variable that has been declared using the PTR

keyword.

• The term {variable_length} represents the resulting integer value of a constant integer expression

to be used as the length of a BCD or STRING type variable.

OPEN ABAL Language Reference Version 5.1t

40

• The term {first_dimension} represents the resulting integer value of a constant integer expression

to be used as the size of the first dimension of an ARRAY type variable.

• The term {second_dimension} represents the resulting integer value of a constant integer

expression to be used as the size of the second dimension of an ARRAY type variable.

Examples
PTR p$

ALTER p(1000)

This example corresponds to the ALTER required as mentioned in the second example of the CREATE

instruction.

PTR p$(5)

ALTER p(1000,10)

This example corresponds to the ALTER required as mentioned in the fourth example of the CREATE

instruction.

REMOVE
This instruction is used to remove or delete or to liberate an allocated memory block that will be

subsequently no longer accessible through the associated pointer variable. The instruction is

symmetrical with the preceding CREATE and ALTER instructions, allowing length and dimension

information to be provided. Any length or dimension information that is provided will be used to

RESET the corresponding variable description back to the provided values. Otherwise, the current

alterations will be preserved for the variable descriptor.

Syntax
The complete syntax of the REMOVE instruction is shown below.

REMOVE {pointer_name} [({variable_length} [, {first_dimension}] [, {second_dimension}])]

Where:

• The term {pointer_name} must be the name of a variable that has been declared using the PTR

keyword.

• The term {variable_length} represents the resulting integer value of a constant integer expression

to be used to RESET the length of a BCD or STRING type variable.

• The term {first_dimension} represents the resulting integer value of a constant integer expression

to be used to RESET the size of the first dimension of an ARRAY type variable.

• The term {second_dimension} represents the resulting integer value of a constant integer

expression to be used to RESET the size of the second dimension of an ARRAY type variable.

Examples
The first example shows the removal of an allocated pointer with or without the reset of the variable

descriptor length information.

PTR p$

REMOVE p

REMOVE p(15)

The second example shows the removal of an allocated pointer with or without the reset of the

variable descriptor length and first dimension information.

OPEN ABAL Language Reference Version 5.1t

41

PTR p$(1)

REMOVE p

REMOVE p(15,1)

FORGET
This instruction is used to reset a pointer to NULL and disconnect it from the memory to which I may

be connected. Only the 5 or 9 bytes used to store the pointer are affected and reset to binary ZERO.

This instruction will, under no circumstances, release the memory to which the pointer was

connected.

Syntax
The complete syntax of the REMOVE instruction is shown below.

FORGET {pointer_name}

• The term {pointer_name} must be the name of a variable that has been declared using the PTR

keyword.

ALIAS
This instruction allows a pointer to create to point to existing variable or created pointer destination.

The nature of the source and target data variables must be compatible.

{pointer_name} = Alias({source_variable})

• The term {pointer_name} must be the name of a variable that has been declared using the PTR

keyword.

• The term {source_variable} must be the name of the variable to which the resulting point variable

is to be connected. If the source is a pointer, the target will point to the same allocated memory

area. If the source is a standard variable, the target will be aliased to the address of the variable

within the corresponding data storage memory, local or global.

Warning
Global pointers may be aliased to Local variables but if the scope in which the connection is established

is exited then the behaviour of the global variable is unpredictable and can cause serious memory

corruption errors to occur since the local variable memory will have been released and reallocated to

another purpose.

VALIDPTR
This instruction returns the initial control byte of the pointer variable allowing the state of the pointer

to be examined and the nature of its usage.

{integer_lvalue} ValidPtr({pointer_name})

• The term {pointer_name} must be the name of a variable that has been declared using the PTR

keyword.

• The term {integer_lvalue} may be an integer variable affectation of a conditional expression such

as IF, WHILE, REPEAT, SELECT or CASE.

The value returned by VALIDPTR will be one of the following:

Symbolic Value Description

NULL /00 The pointer is not connected

OPEN ABAL Language Reference Version 5.1t

42

ALLOCATED /01

The target of the pointer is the
result of a CREATE, ATTACH or
an ALIAS of a CREATE or
ATTACH.

REFERENCE /03
The target of the pointer is a
standard variable or expression
resulting from an ALIAS.

PROCEDURE /85
The pointer is an indirection to
a PROCEDURE in the current
PROGRAM execution context.

SEGMENT /09
The pointer is an indirection to
a SEGMENT in the current
PROGRAM execution context.

DYNAMIC LIBRARY FUNCTION /11

The pointer is an indirection to
a dynamic library function and
comprises both library and
function identification values.

ATTACH
This instruction allows an ABAL PROGRAM to be attached to a POINTER, which when suitably

redefined, allows invocation of the procedures of the program and access to its global variables.

Multiple attachment instances, resulting from multiple uses of the ATTACH instruction will result in

multiple program instances, each with an independent global variable image (program object

container) whilst sharing the procedure indirection table and other attachment support structures.

The structures behind the attachment pointer are complex and execution context dependent so care

must be taken not to damage their memory.

Two alternative forms are possible, one where the ABAL PROGRAM name is provided as a string

parameter, the other where the ABAL PROGRAM name is retrieved from the ASSIGN TABLE entry

corresponding to the provided integer parameter.

EXAMPLE
PTR p$=18

FIELD=M,p

 PTR PROC mt(1)

 PTR vg

FIELD=M

;** either

ATTACH P(“program.at”)

;** or

ASSIGN=1,“program.at“

ATTACHE P(1)

Upon successful completion of the ATTACH operation, the pointer P will be allocated and will contain

a pointer to the procedure table and a pointer to the storage memory of the global variables. The

global variable pointer may be redefined accordingly to access any, and all, variables of the program.

OPEN ABAL Language Reference Version 5.1t

43

Pointers to attached programs may be passed as parameters to procedures invoked through the

procedure indirection table allowing attach programs to CALL back, or through, to other attached

programs allowing a complex community of collaboration to be achieved.

CALL
This instruction allows invocation of procedure pointers, that were previously initialised by the PROC

PTR instruction.

CALL ({procedure_pointer_name})({parameter_values})

• The term {procedure_pointer_name} must be the name of a variable that has been declared using

the DCL PROC, or PTR PROC keywords.

• The term {parameter_values} represents the list of commas separated parameter values required

to be passed to the corresponding procedure.

EXAMPLES
Invocation of the procedure pointers of the preceding example of the ATTACH instruction, is show

below.

CALL (mt(1))(1,2,3)

CALL (mt(2))(“examples”)

DETACH
This instruction allows an ABAL PROGRAM that has previously been attached to a POINTER, to be

detached from the pointer.

DETACH {pointer_name}

The attachment support structures, and procedure indirection table will be released when the last

detachment instance has been released. Any remaining attached instances will be detached and

released during an eventual STOP instruction, either terminal, or during PROGRAM CHAIN operation.

PROC PTR
This instruction allows a PROCEDURE pointer, such as those contained in the attachment object

procedure indirection table, to be initialised to point to a procedure of the current program context,

then subsequently invoked using the CALL instruction.

{procedure_pointer_name} = PROC PTR {procedure_name}

• The term {procedure_pointer_name} must be the name of a variable that has been declared using

the DCL PROC, or PTR PROC keywords.

• The term {procedure_name} will be used to resolve the target PROCEDURE of the indirection.

EXAMPLE
PROGRAM “example”

DCL PROC example

PROC myexample() :: Endproc

SEGMENT 0

Example = PROC PTR myexample

CALL (example)()

ESEG 0

END

OPEN ABAL Language Reference Version 5.1t

44

SEGMENT PTR
This instruction allows a SEGMENT pointer to be initialised, to point to a SEGMENT of the current

program context, then subsequently invoked using the CALL instruction.

{segment_pointer_name} = SEGMENT PTR {segment_identity}

• The term {segment_pointer_name} must be the name of a variable that has been declared using

the DCL SEGMENT, or PTR SEGMENT keywords.

• The term {segment_identity}, either a segment number or a segment name, will be used to resolve

the target SEGMENT of the indirection.

EXAMPLE
PROGRAM « example »

DCL SEGMENT example

SEGMENT 0

Example = SEGMENT PTR 2

CALL (example)()

ESEG 0

SEGMENT 2 :: ESEG 2

END

USER PTR
This instruction allows a DYNAMLIC LIBRARY or USER function pointer to be initialised, to point to a

DYNAMIC LIBRARY function of the current program context, then subsequently invoked using the CALL

instruction.

{user_pointer_name} = USER PTR {dynamic_library_function_name}

• The term { user_pointer_name } must be the name of a variable that has been declared using the

DCL USER, or PTR USER keywords.

• The term { dynamic_library_function_name } will be the name of a dynamic library function

described by the corresponding definitions file used to resolve the target DYNAMIC LIBRARY

FUNCTION of the indirection.

EXAMPLE
#user “asfun.def”

PROGRAM “example”

DCL USER example

SEGMENT 0

Example = USER PTR winit

CALL (example)()

ESEG 0

END

OPEN ABAL Language Reference Version 5.1t

45

OBJECT ORIENTED ABAL

Introduction
Object Orient ABAL, or ABAL++ as it was later to become known, was originally designed to facilitate

the development and management of very large-scale business applications. At that time, back in

1989, object-oriented programming, though heard of, it was seriously frowned upon by the then

established community of the structured programming enthusiasts. Object Oriented concepts were

never designed as a replacement for structured programming techniques, instead they were intended

to complement existing methodology and algorithms with encapsulation to facilitate integration and

re-useability of code. Modern day cloud computing advances have resulted in the generalized

acceptance of the rationalisation of IT in terms of COMPUTE, STORAGE and NETWORK with the former

embodying the concept of CODE, the second the concept of DATA and the later to represent the

communication and organisational methods by which “inter” CODE and DATA relationships may be

supported, performed, and managed between remote processes, machines, and devices.

This introductory section to the Object-Oriented version of ABAL describes the reasons leading to the

decisions that were taken on the journey of transformation from the state of STRUCTURED

programming with ABAL to the state of OBJECT programming with ABAL.

DATA
The data definition instructions of ABAL allow an application programmer to describe the data

structures required by their application with a focus on, and high degree of control over, the layout of

that data in the physical memory of the program, either global or local. ABAL is a member of the group

of computer languages known as “Strict Type Checking” languages where all data access and

operations are carefully controlled, during the compilation phase, to ensure that they are of the

appropriate and anticipated type. Consequently, variables and constants are all declared (or defined)

within a particular namespace, either GLOBAL or LOCAL, with a unique name and an explicit data type,

where a LOCAL declaration of a particular name will be said to “hide” or “mask” a GLOBAL declaration

of the same name. The combination of DATA declarations, using the ABAL keywords CONST, DCL, PTR,

FIELD and FILLER allow the description of complex data structures to perfection, not only with an

absolute control and understanding of the implantation of the corresponding values in the computer’s

physical memory, but also with a level of abstraction allowing the same data structures to be perfectly

preserved and operational on any existing computer memory management hardware of BIG or LITTLE

ENDIAN format and RESTRICTED or UNRESTRICTED byte-aligned access. The ABAL runtime, EXA, being

responsible for all memory access operations, both fetch and store, provides the appropriate “just in

time” transformations that allow this abstraction of data not only to be possible but also to be portable

across both time and space.

The predecessor of ABAL, known as B.A.L., was limited in scope to just 64K of memory, for the storage

of not only all data, both constants and variables alike, but also the current segment of code under

execution, with a constant trade off, required to be performed by the programmer, between the

number of global variables and constants of a program and the maximum size of a segment of code.

ABAL was designed to exceed these limitations, primarily within identical hardware constraints of the

64K unit, but ultimately targeting the anticipated and emerging environments that we all know today

with their unconstrained access and 64bit addressing. Not only was the GLOBAL variable and constant

management mechanism extended, to offer up to 64K each, but was complemented by the addition

of the equivalent LOCAL variable and constant management mechanisms, equally for all SEGMENT,

and the newly added PROCEDURE, code blocks.

OPEN ABAL Language Reference Version 5.1t

46

The resulting increase in both size and scope of the potential for each program’s data declarations and

definitions, even within the confines of the original 64K boundary, saw an almost immediate ultra-

proliferation of the total number variables and constants declared and used within a single ABAL

PROGRAM, for the description of their complex business management data structures. The replication

of these data structures became a very complex and time-consuming operation, requiring the

appropriate renaming of the multitude of member variables comprising the logical data structure, to

ensure their name-space unicity, the management of which, over time, became a major point of

fragilization and a frequent source of anomalies and program mal-function.

The first extensions to ABAL, provided by ABAL++, in the form of the #STRUCT/#ENDSTRUCT and

#UNION/#ENDUNION were designed, especially, to alleviate this problem, with the ABAL compiler /

translator, OTR, becoming responsible for the declaration and naming of all structure member

variables and with the addition of the corresponding OBJECT.MEMBER language constructions,

subsequently allowing programmer access to the internal member declarations of the resulting

structures. The collection of individual member variables declarations, required for the description of

each structure, are performed by the translator, OTR, using the identical pseudo DCL, PTR, FIELD and

FILLER instructions that would be required to achieve the same results, if they had been explicitly

individually declared by the programmer. The name of each member variable being only known to the

translator, is to be represented by the programmer by the appropriate instance name and member

name combination.

EXAMPLE STRUCTURE
Considering the following example of an ADDRESS structure, leaving aside the sizes of the elements,

a general approach could be declared using standard ABAL data declaration instructions as follows.

DCL ADDRESS$

FIELD=M, ADDRESS

 DCL STREET$

 DCL LOCALITY$

 DCL TOWN$

 DCL CODE$

 DCL COUNTRY$

FIELD=M

The addition of a second address management structure would require the replication of all variable

declarations with new names, naturally very cumbersome and very prone to error.

DCL ADDRESS2$

FIELD=M, ADDRESS2

 DCL STREET2$

 DCL LOCALITY2$

 DCL TOWN2$

 DCL CODE2$

 DCL COUNTRY2$

FIELD=M

OPEN ABAL Language Reference Version 5.1t

47

The use of a structure greatly simplifies the replication of structural data types and alleviates all

eventual adjacent anomalies.

#STRUCT ADDRESS

 DCL STREET$

 DCL LOCALITY$

 DCL TOWN$

 DCL CODE$

 DCL COUNTRY$

#ENDSTRUCT ADDRESS

ADDRESS A

ADDRESS B

ADDRESS C

The members of each structure being accessible through the corresponding “OBJECT NAME . MEMBER

NAME” construction, as shown below.

A.TOWN = “PARIS”

B.TOWN = “NICE”

C.TOWN = A.TOWN

EXAMPLE UNION
When a memory area is to be redefined with a variety of different representations, the use of a union

greatly simplifies, not only the description, but also its ultimate replication Considering the following

example of a hypothetical unification of all basic abal datatypes, leaving aside the sizes of the

elements, a general approach could be declared using standard ABAL data declaration instructions as

follows.

DCL BUFFER$

FIELD=M, BUFFER

 DCL ASCII$

FIELD=M, BUFFER

 DCL BCD=8

FIELD=M, BUFFER

 DCL INT8#

FIELD=M, BUFFER

 DCL INT16%

FIELD=M, BUFFER

 DCL INT32 :

FIELD=M, BUFFER

OPEN ABAL Language Reference Version 5.1t

48

 DCL INT64&

FIELD=M

Naturally its replication would require:

DCL BUFFER2$

FIELD=M, BUFFER2

 DCL ASCII2$

FIELD=M, BUFFER

 DCL BCD2=8

FIELD=M, BUFFER

 DCL INT82#

FIELD=M, BUFFER

 DCL INT162%

FIELD=M, BUFFER

 DCL INT322 :

FIELD=M, BUFFER

 DCL INT642&

FIELD=M

The same results can be achieved by unification:

#UNION BUFFER

 DCL ASCII$

 DCL BCD=8

 DCL INT8#

 DCL INT16%

 DCL INT32 :

 DCL INT64&

#UNION BUFFER

BUFFER A

BUFFER B

BUFFER C

The advantages of the union, greatly simplifies the replication of the data types again alleviating all

eventual adjacent anomalies.

The members of each structure being naturally accessible through the corresponding “OBJECT NAME

. MEMBER NAME” construction, as shown below.

A.ASCII = “SOME TEXT”

B.BCD = 1.234

OPEN ABAL Language Reference Version 5.1t

49

C.IN16 = 77

MIXED EXAMPLE
Unions and structures can be freely combined with basic data declarations withing the definitions of

other unions and structures.

#STRUCT ANOTHER

ADDRESS A

BUFFER B

ADDRESS C

BUFFER D

ADDRESS E

#ENDSTRUCT ANOTHER

ANOTHER A

ANOTHER B

ANOTHER C

Notice that the names A, B and C, used within the structure definition are not in conflict with names

of the instances of the structure ANOTHER. Access to individual member variables would be

performed using the fully qualified object access path comprising “OBJECT NAME . MEMBER OBJECT

NAME . MEMBER VARIABLE NAME” as shown below.

A.B.ASCII = “SOME TEXT”

B.D.BCD = 1.234

C.B.INT16 = C.D.INT16

A.A.TOWN = “PARIS”

B.C.TOWN = “NICE”

C.A.TOWN = A.E.TOWN

Please take the time you need, to feel comfortable with the above examples, before proceeding

further. It is very important to fully understand the correspondence between the traditional manual

declaration of structured data variables and the automation of these operations using the new UNION

and STRUCT constructions.

CODE
Despite its early origins alongside similar primitive programming languages such as BASIC, B.A.L., and

its subsequent successor ABAL, both offer a complete collection of instructions in support of

STRUCTURED PROGRAMMING. It should be noted here, however, that the term STRUCTURED, in this

sense, bears NO relation to the use of the term in the preceding section relation to the declaration of

data and the new STRUCT and UNION constructions. The term STRUCTURED, here, refers simply to

the careful imbrication, or nesting, of related structured programming instructions, such as

IF/ELSE/ENDIF, WHILE/WEND, FOR/NEXT, SELECT/CASE, REPEAT/UNTIL, DO/LOOP, within a single

logical section of code, as opposed to jumping around, back and forth, between close and distant

regions of the program, using the much-abhorred, or much-revered, as your case may be, GOTO

instruction.

OPEN ABAL Language Reference Version 5.1t

50

STRUCTURED CODE EXAMPLE
The following section of code represents a hypothetical structured programming example:

DO

 WHILE E = 0

 FOR N = 1 to 10

 IF ((X = N) OR (E <> 0))

 ELSE

 ENDIF

 NEXT N

 WEND

LOOP

With each level of indentation used to represent the nested sub-structure of the code.

From the above example, and especially with the assistance of syntactical colouration, it can be clearly

seen that the WHILE/WEND, FOR/NEXT and IF/ELSE/ENDIF statements, populating a particular

SEGMENT or PROECDURE code region, are accessing variables and are consequently very intimately

related with the actual structure of the accompanying data declarations. These variables may have

been declared with either GLOBAL or LOCAL scope. These variables may also have been declared using

the DATA declaration tools UNION and STRUCT as can be seen in the following section of code.

#STRUCT BUFFER

DCL E%

DCL N%

DCL X%

#ENDSTRUCT BUFFER

BUFFER A

DO

 WHILE A.E = 0

 FOR A.N = 1 to 10

 IF ((A.X = A.N) OR (A.E <> 0))

 ELSE

 ENDIF

 NEXT A.N

 WEND

LOOP

In which case it is immediately obvious that the subsequent section of code is intimately related with

not only the definition of the structure, but also with the resulting instance of the structure itself,

requiring complete replication of the code for application to an alternative instance even of the same

structure. Naturally, the standard ABAL PROCEDURE would be an immediate choice for the

OPEN ABAL Language Reference Version 5.1t

51

factorisation of this section of code, with redefinition of the received structured data parameter as a

collection of traditional local variable declarations, as shown below.

PROC EXAMPLE(BUFFER$)

FIELD=M,BUFFER

DCL E%

DCL N%

DCL X%

FIELD=M

ENDLOC

DO

 WHILE E = 0

 FOR N = 1 to 10

 IF ((X = N) OR (E <> 0))

 ELSE

 ENDIF

 NEXT N

 WEND

LOOP

ENDPROC

Or could equally be described using a structure instance parameter.

PROC EXAMPLE (BUFFER P)

DO

 WHILE P.E = 0

 FOR P.N = 1 to 10

 IF ((P.X = P.N) OR (P.E <> 0))

 ELSE

 ENDIF

 NEXT P.N

 WEND

LOOP

ENDPROC

This is perfectly acceptable until the section of code would benefit from the ability to not only access

different variables and values but also adapt itself to the actual very specific circumstances involved.

To demonstrate this, consider the following example.

DCL BCD

OPEN ABAL Language Reference Version 5.1t

52

DCL MSG$

PRINT=1:TAB(5,5),”VALUE:”,BCD

PRINT=1:TAB(5,6),”MESSAGE:”,MSG

This could not be so simply refactored as a procedure since the strict typed parameter, VAR$, of the

procedure, would be refused the transfer of the BCD value, requiring a much more complex handling

of the data or a replication of the procedure for the corresponding types.

DCL BCD

DCL MSG$

PROC DISPLAY(ATC%,ATL%,LABEL$,VAR$)

PRINT=1:TAB(ATCOL,ATLIN),LABEL,”:”,VAR

ENDPROC

DISPLAY(5,5,”VALUE”,BCD)

DISPLAY(5,6,”MESSAGE”,MSG)

This is naturally a very trivial example, but an added inconvenience would be incurred, in terms of

performance since, the call to a procedure is slower than the execution of an INLINE section of code.

The next extension to ABAL, provided by ABAL++, in the form of the #MACRO/#ENDMACRO, was

designed, especially, to alleviate this problem, with the ABAL compiler / translator, OTR, becoming

responsible for replication of the section of code defined within the body of the macro, whilst

performing substitution of the values of the parameters received by the invocation of the macro. The

following example should clarify this.

#STRUCT BUFFER

DCL E%

DCL N%

DCL X%

#ENDSTRUCT BUFFER

#MACRO EXAMPLE(P)

DO

 WHILE P.E = 0

 FOR P.N = 1 to 10

 IF ((P.X = P.N) OR (P.E <> 0))

 ELSE

 ENDIF

 NEXT P.N

 WEND

LOOP

#ENDMACRO EXAMPLE

OPEN ABAL Language Reference Version 5.1t

53

BUFFER A

BUFFER B

BUFFER C

EXAMPLE(A)

EXAMPLE(B)

EXAMPLE(C)

After careful examination of the preceding example, it should be clearly understood that the structure

instances named A, B and C will be passed as the value of the parameter P, of the macro “EXAMPLE”,

and will be substituted for all terms P within the code of the body of the macro. This will result in the

replication of the structured programming instructions contained within the macro, each replication

adapted to refer to the corresponding named structure, as determined by the value of the parameter

P passed on invocation of the macro.

Please take the time you need, to feel comfortable with the above examples, before proceeding

further. It is very important to fully understand the way in which the ABAL translator is capable of

replicating sections of code while performing parameter pasting substitution.

This, again, is a very trivial example. Its use in actual programs is not encouraged and should only be

used sparing, if at all, but its understanding is an important step in the journey, before moving on to

the final section of this introduction to the fundamental requirements of object-oriented

programming techniques.

CLASSES
The preceding sections relating to DATA and to CODE outline the transformations that were required

to facilitate the replication of complex data structures and the integration of these data structures

while replicating and adapting sections of code. Without an adequate organisational layer,

applications, based on the data and code replication techniques described above, would still be

operational but would present a rather ungainly mess of individual structure and macro definitions.

The final important extension to ABAL, provided by ABAL++, in the form of the #CLASS/#ENDCLASS,

was designed, especially, to alleviate this problem by combining the powerful data and code

replication techniques afforded by the STRUCT/UNION and MACRO definitions into a descriptive

organisational unit known as a CLASS.

The following section of ABAL++ code shows a trivial example of a declaration of a class equivalent to

the definition of a structure in the preceding DATA section.

#CLASS EXAMPLE

DCL INT8#

DCL INT16%

DCL INT32:

DCL INT64&

DCL BCD=8

DCL MSG$

PUBLIC INLINE DISPLAY:

OPEN ABAL Language Reference Version 5.1t

54

 PRINT=1:INT8,INT16,INT32,INT64,BCD,MSG,TABV(1)

END

#ENDCLASS EXAMPLE

EXAMPLE E

E.DISPLAY

A CLASS definition may be composed of both data MEMBER definitions and code METHOD definitions

and should be considered as being very similar to the definition of a new TYPE. Both MEMBER and

METHOD definitions may be declared as PUBLIC, PRIVATE determining the scope of access allowed to

the member from outside of the CLASS encapsulation, and COMMON determining the localisation of

the actual member data variable or structure either inside the object container or as a shared common

class variable.

MEMBER definitions may be described using either standard DCL type declaration syntax or extended

STRUCT/UNION/CLASS syntax or any valid combination of the two.

METHOD definitions allow the organisation of blocks, or collections, of ABAL++ instructions into

discrete functional units, of one of the five fundamental types INLINE, ROUTINE, FUNCTION, OVERLAY

and USER FUNCTION, comprising a signature composed of its formal parameters and an eventual

return type, and for all except for the case of the USER FUNCTION, the block of ABAL++ instructions

delimited by the END keyword. In addition to the fundamental type, METHODS may be distinguished

by their intended usage type CONSTRUCTOR, DESTRUCTOR, EXCEPTION, PRECONDITION,

POSTCONDITION and INVARIANT. Methods may declare their nature of POLYMORPHIC ability or

interaction using the STRICT and RELAX keywords. Finally, OVERLAY, FUNCTION and USER FUNCTION

methods may be declared with INDIRECT, VIRTUAL, OVERLOAD or POINTER access attributes.

Classes are to be instanced in the same way as for structures and unions and their instance will be

represented by an instance variable. A simple example of this can be seen below.

PROGRAM “EXAMPLE”

#CLASS EXAMPLE

DCL S$

PUBLIC INLINE METHOD HELLO: (P$)

 PRINT=1: (“Hello”,$), P, TABV(1)

 s = p

END

#ENDCLASS EXAMPLE

EXAMPLE E

E.HELLO(“world”)

END

PUBLIC
CLASS members that are declared PUBLIC can be accessed from outside of the CLASS encapsulation

and are said to contribute to the CLASS interface.

OPEN ABAL Language Reference Version 5.1t

55

PRIVATE
CLASS members that are declared PRIVATE can only be accessed from inside the CLASS encapsulation,

or from a CLASS that has been declared as a FRIEND, are said to contribute only to the CLASS

implementation.

INHERIT
The INHERIT keyword allows an entire CLASS definition to be included, or absorbed, into the current

CLASS definition. This keyword represents the concept of FUSIONAL inheritance. Subsequent CLASS

MEMBER and METHOD definitions may accidentally or deliberately redefine the fundamental

characteristics of members of the inherited class, transforming their behaviour accordingly. As a result

of this operation, any of the FUNCTION and OVERLAY methods, originally defined in the inherited

class, will become parented by the inheriting CLASS, giving rise to the generation of independent ABAL

procedures and segments. The following shows an example of use of the INHERIT keyword.

#CLASS A

PUBLIC DCL V%

PUBLIC FUNCTION F:

END

#ENDCLASS A

#CLASS B

PUBLIC DCL FUNCTION MESSAGE$=256

INHERIT A

#ENDCLASS B

EXAMPLE A

EXAMPLE B

In the above example, objects of class A will comprise a single integer variable V and the corresponding

procedure F, while objects of class B will comprise the integer variable V and the transformed

procedure F.

PROTECT
This keyword may be associated with any MEMBER declaration statement and will signal that the

corresponding member is to be protected against transformation, either deliberate or accidental, by

an inheriting class. If the protected member has been defined in the inheriting class, then the member

itself will be protected against transformation by any corresponding member inherited during

subsequent INHERIT operations.

BASE CLASS
The alternative to FUSIONAL INHERITANCE is COMPOSITIONAL INHERITANCE more traditionally

referred to as BASE CLASS inheritance. This is not represented by the keywords BASE and CLASS,

instead it is described as shown in the following example.

#CLASS A

PUBLIC DCL V%

PUBLIC FUNCTION F:

OPEN ABAL Language Reference Version 5.1t

56

END

#ENDCLASS A

#CLASS B (PUBLIC A)

PUBLIC DCL FUNCTION MESSAGE$=256

PUBLIC FUNCTION G:

END

#ENDCLASS B

EXAMPLE B

In this example, objects of class B will comprise a member object of class A containing single integer

variable V and the corresponding procedure F, and a string variable and another procedure G. Further

examples of the use of base class inheritance will be given in the description of the VIRTUAL and

OVERLOAD methods later in this document. The PUBLIC keyword before the base class name indicates

that the public members of the base instance are to be made visible for use as part of the derived

classes public interface.

FRIEND
The FRIEND keyword allows a CLASS definition to declare the name of a friend class that will be allowed

access to PRIVATE members as if it were a direct extension of the hosting class’s own scope. This can

be of importance when constructing complex base class hierarchies whilst ensure encapsulation of

details of the actual implementation.

COMMON
The data storage elements of CLASS members that are declared COMMON will not be declared in the

standard OBJECT container but will be declared uniquely in the GLOBAL variable space, to be shared

between all objects of the same class, when declared PRIVATE COMMON, or by all objects of classes

declaring the same COMMON member object, method, or variable, when declared PUBLIC COMMON.

The following section of ABAL++ code shows a trivial example of the use of the keyword COMMON.

 #CLASS EXAMPLE

PRIVATE DCL A$

PRIVATE COMMON DCL B$

PRIVATE DCL C$

#ENDCLASS EXAMPLE

EXAMPLE E

EXAMPLE F

The following section of ABAL code shows the declarations generated for the trivial example of the

use of the keyword COMMON.

PROGRAM “EXAMPLE”

;** the common member variable

DCL EB$

;** the instance E

OPEN ABAL Language Reference Version 5.1t

57

PTR E$=30

FIELD=M,E

 DCL EA$

 DCL EC$

FIELD=M

;** the instance F

PTR F$=30

FIELD=M,F

 DCL FA$

 DCL FC$

FIELD=M

SEGMENT 0

;** construction of E

CREATE E

;** construction of F

CREATE F

ESEG 0

END

LIBRARY
The LIBRARY keyword allows the name of a dynamic library to be specified for the hosting class. This

will identify the dynamic library destined to receive the collection of USER FUNCTION descriptions of

the dynamic library functions.

METHOD
This optional keyword can be added to reinforce the fact that a METHOD declaration is a METHOD.

The complete method declaration syntax, shown below, comprises the scope of the method as PUBLIC

or PRIVATE, the POLYMORPHIC nature STRICT or RELAXED, the fundamental method type, as one of

INLINE, ROUTINE, OVERLAY, FUNCTION or USER FUNCTION, the method access as METHOD, INDIRECT,

POINTER, VIRTUAL, VIRTUAL or OVERLOAD, and the specific usage as CONSTRUCTOR, DESTRUCTOR,

EXCEPTION, INVARIANT, PRECONDITION or POSTCONDITON.

; ** method declaration syntax components

{SCOPE} {POLYMORPHSM} {RETURNTYPE} {ACCESS} {TYPE} {USAGE} {name}: ({signature})

{INSTRUCTIONS}

END

The minimum declaration of a method requires a colon terminated naming token at very least. To

resolve the ambiguity between a method and a 32bit integer variable, the variable must be declared

using the DCL keyword. No white space is tolerated between the name terminating colon nor between

the opening brace of the eventual signature parameters. This must be carefully respected because

when space is present then the subsequent punctuation is presumed to be part of the method body

OPEN ABAL Language Reference Version 5.1t

58

and not part of the signature definition. This distinction is of importance to allow the use of inline

methods as token pasting macros where the macro text commences immediately after the method

signature separated by a single space character without a preceding line feed. The signature, when

present, will comprise a comma separated list of valid types, abal data types or class object types,

between an opening and closing brace.

RETURN TYPE
A method return type, when present and allowed for INLINE, FUNCTION and USER FUNCTION

methods, should be described using the CLASS {class name}, STRING, NUMERIC, INTEGER and POINTER

keywords and should immediately follow any {SCOPE} and or {POLYMORPHISM} modifiers and before

any {ACCESS} {TYPE} {USAGE} modifiers or the colon terminated naming token, as appropriate.

The following program source shows some simple examples of methods declaring return types.

#CLASS another

PUBLIC DCL buffer$

PRIVATE INLINE CONSTRUCTOR initialise:

 buffer = "buffer"

END

#ENDCLASS another

#CLASS EXAMPLE

PRIVATE DCL message$

PRIVATE DCL value%

PRIVATE another pointer P

PRIVATE INLINE CONSTRUCTOR initialise:

 message = "message"

 CREATE P

 value = 100

END

PUBLIC STRING FUNCTION get_message:

 EXIT (message)

END

PUBLIC INTEGER INLINE get_value:

 EXIT (value)

END

PUBLIC CLASS another pointer FUNCTION get_pointer:

 EXIT (P)

END

PUBLIC ROUTINE display:

 Print=1:message,value," : ",P.buffer,TABV(1)

OPEN ABAL Language Reference Version 5.1t

59

END

#ENDCLASS EXAMPLE

PROGRAM "EXAMPLE"

EXAMPLE E

SEGMENT 0

 DCL name$

 DCL i%

 PTR p$

 ENDLOC

 name = E.get_message

 i = E.get_value

 p = E.get_pointer

 E.display

 Print=1:name,i," : ",p,tabv(1)

ESEG 0

END

Your attention is drawn to the use of the EXIT keyword to return a value from an INLINE METHOD and

that an ALIAS is not required when returning a pointer from a METHOD declared as returning a pointer.

The ALIAS will be handled implicitly by the ABAL translator.

INLINE
These methods are identical in operation to that of the MACRO. The result of their expansion will be

generated into the currently active SEGMENT or PROCEDURE, with the automated substitution or

resolution, during code expansion, of all references to data members of the same class, or other

nested structures, and of all references to methods of the same class or nested structures. Inline

methods may define formal parameters, which will be substituted during code expansion in the same

way as for MACRO parameters.

Examples of INLINE methods can be found in the following sections describing the other keywords.

ROUTINE
These methods are identical in operation to that of the INLINE except that the result of the expansion,

for a particular object instance, will be generated as a unique GOSUB/RETURN structure at the end of

the hosting SEGMENT or PROCEDURE. A GOSUB instruction will be generated in the hosting SEGMENT

or PROCEDURE at the position of invocation. These methods cannot define formal parameters nor

return types. Automated substitution or resolution will be performed, during code expansion, of all

references to data members of the same class, or other nested structures, and of all references to

methods of the same class or nested structures.

Examples of ROUTINE methods can be found in the following sections describing the other keywords.

FUNCTION
These methods give rise to the generation of an ABAL PROCEDURE containing the code of the method.

An implicit pointer variable will be defined as the first parameter of the PROCEDURE to receive a

OPEN ABAL Language Reference Version 5.1t

60

pointer to the instance for which the FUNCTION method has been invoked. Automated substitution

or resolution will be performed, during code expansion, of all references to data members of the same

class, or other nested structures, and of all references to methods of the same class or nested

structures. FUNCTION methods may define formal parameters, which will be substituted during code

expansion in the same way as for MACRO parameters. FUNCTION methods may also define formal

return values.

Examples of FUNCTION methods can be found in the following sections describing the other keywords.

OVERLAY
These methods give rise to the generation of an ABAL SEGMENT containing the code of the method.

An implicit pointer variable will be defined as the first declaration of the LOCAL variable table and

redefined with the appropriate class structure. A pointer to the invocation object will be passed to the

OVERLAY method using a TCODE called register convention. These methods cannot define formal

parameters nor return types. Automated substitution or resolution will be performed, during code

expansion, of all references to data members of the same class, or other nested structures, and of all

references to methods of the same class or nested structures.

USER FUNCTION
These methods represent dynamic library functions in the dynamic library defined by the string value

of the LIBRARY instruction. The methods are expected to be in the library in the exact order of their

declaration in the class. USER FUNCTION methods may define formal parameters and may also define

formal return values. USER FUNCTION methods may not declare an END delimited collection of

ABAL++ instructions.

CONSTRUCTOR
These methods will be invoked when an object of the hosting class is created, either:

❖ during the implicit construction of a natural CLASS instantiation statement (as shown in the

preceding examples.)

❖ during the explicit construction of a CLASS object POINTER statement.

In both cases the constructor method, irrespective of its fundamental type, will be activated to ensure

that the expected post-constructive state of the object is established.

Examples of constructor method declarations can be found in the example in the section relating to

STRICT parameter checking.

DESTRUCTOR
These methods will be invoked when an object of the hosting class is destroyed, either:

❖ during the implicit destruction of a natural CLASS instantiation statement (as shown in the

preceding examples.)

❖ during the explicit destruction of a CLASS object POINTER statement.

In both cases the destructor method, irrespective of its fundamental type, will be activated to ensure

that the any residual state members are correctly released prior to the release of the object itself.

Examples of destructor method declarations can be found in the example in the section relating to

STRICT parameter checking.

OPEN ABAL Language Reference Version 5.1t

61

INDIRECT
When OVERLAY, FUNCTION or USER FUNCTION methods are declared INDIRECT, a corresponding

ABAL SEGMENT, PROC or USER pointer variable will be declared and initialised, during the construction

phase of the object life cycle, to point to the corresponding method. The resulting pointer variable will

be used to allow indirect access to the method by all method invocation statements for corresponding

method.

The following class object source:

#CLASS EXAMPLE

PUBLIC INDIRECT FUNCTION F:

END

#ENDCLASS EXAMPLE

EXAMPLE E

Would produce the following ABAL declarations:

PROGRAM “EXAMPLE”

PTR E$=9

FIELD=M, E

DCL PROC F

FIELD=M

PROC EXAMPLE_F(PTR E$=9) :: ENDPROC

SEGMENT 0

CREATE E

F = PROC PTR EXAMPLE_F

…

VIRTUAL
When OVERLAY, FUNCTION or USER FUNCTION methods are declared VIRTUAL, a method access

vector comprising an object pointer and the corresponding ABAL SEGMENT, PROC or USER pointer

variable will be declared and initialised, during the construction phase of the object life cycle, to point

to the parenting object and the corresponding method. The resulting pointer variables will be used to

allow indirect access to the method by all method invocation statements for corresponding method.

The following class object source:

#CLASS EXAMPLE

PUBLIC VIRTUAL FUNCTION F:

END

#ENDCLASS EXAMPLE

EXAMPLE E

E.F

OPEN ABAL Language Reference Version 5.1t

62

Would produce the following ABAL declarations:

PROGRAM “EXAMPLE”

PTR E$=18

FIELD=M, E

DCL PROC EF

PTR EFP$=18

FIELD=M

PROC EXAMPLE_F(PTR E$=18) :: ENDPROC

SEGMENT 0

CREATE E

EFP = ALIAS(E)

EF = PROC PTR EXAMPLE_F

CALL (EF)(EFP)

OVERLOAD
When OVERLAY, FUNCTION or USER FUNCTION methods are declared OVERLOAD, and a

corresponding VIRTUAL method is found to be accessible from the current base class hierarchy of

identical method signature then the VIRTUAL method access vector will be overloaded, or redefined,

and a new method access vector comprising the overloading object pointer and the corresponding

ABAL SEGMENT, PROC or USER pointer variable will be declared and initialised, during the construction

phase of the object life cycle, to point to the parenting object and the corresponding method. The

resulting pointer variables will be used to allow overloaded indirect access to the method by all

method invocation statements for corresponding method.

The following class object source:

#CLASS EXAMPLE

PUBLIC VIRTUAL FUNCTION F:

END

#ENDCLASS EXAMPLE

#CLASS DERIVED (EXAMPLE)

PUBLIC OVERLOAD FUNCTION F:

END

#ENDCLASS DERIVED

EXAMPLE D

D.F

Would produce the following ABAL declarations:

PROGRAM “EXAMPLE”

PTR D$=18

OPEN ABAL Language Reference Version 5.1t

63

FIELD=M, D

DCL PROC EF

PTR EFP$=18

FIELD=M, EF

DCL PROC DF

PTR DFP$=18

PROC EXAMPLE_F(PTR E$=18) :: ENDPROC

PROC DERIVED_F(PTR E$=18) :: ENDPROC

SEGMENT 0

CREATE D

EFP = ALIAS(D)

EF = PROC PTR EXAMPLE_F

…

DFP = ALIAS(D)

DF = PROC PTR DERIVED_F

CALL (DF)(DFP)

The importance of this mechanism is not immediately visible in the trivial example above since the

VIRTUAL/OVERLOAD mechanism is intended in support of much more complex situations requiring

MULTIPLE INHERITANCE.

The following ABAL++ source example demonstrates the powerful advantages of the

VIRTUAL/OVERLOAD construction in a trivial double base class derivation.

; ** definition of the base class ONE with two virtual methods

#CLASS ONE

PUBLIC FUNCTION CONSTRUCTOR I:

 PRINT=1:"CONSTRUCTION ONE",TABV(1)

 PRINT=1:"-ONE.I",TABV(1)

; ** the constructor I of class ONE invokes the methods A and B

 A()

 B()

END

PUBLIC VIRTUAL FUNCTION A:

 PRINT=1:"-ONE.A",TABV(1)

END

PUBLIC VIRTUAL FUNCTION B:

 PRINT=1:"-ONE.B",TABV(1)

OPEN ABAL Language Reference Version 5.1t

64

; ** the method B invokes the method A

 A()

END

#ENDCLASS ONE

;** definition of the base class TWO with two virtual methods

#CLASS TWO

PUBLIC FUNCTION CONSTRUCTOR I:

 PRINT=1:"CONSTRUCTION TWO",TABV(1)

 PRINT=1:"-TWO.I",TABV(1)

; ** the constructor I of class TWO invokes the methods C and D

 C()

 D()

END

PUBLIC VIRTUAL FUNCTION C:

 PRINT=1:"-TWO.C",TABV(1)

; ** the method C invokes the method D

 D()

END

PUBLIC VIRTUAL FUNCTION D:

 PRINT=1:"-TWO.D",TABV(1)

END

#ENDCLASS TWO

; ** definition of the derived class DERIVED with base class inheritance of classes ONE and TWO

#CLASS DERIVED (PUBLIC ONE, PUBLIC TWO)

; ** overloading of the virtual method B of class ONE

PUBLIC OVERLOAD FUNCTION B:

 PRINT=1:"-DERIVED.B",TABV(1)

; ** the overloading method B invokes the method A of class ONE

 A()

;** and the method C of class TWO effectively, and formally, bridging between the two class concepts

 C()

END

; ** overloading of the virtual method D of class TWO

PUBLIC OVERLOAD FUNCTION D:

 PRINT=1:"-DERIVED.D",TABV(1)

OPEN ABAL Language Reference Version 5.1t

65

; ** the overloading method D invokes the original overloaded method D of class TWO

 TWO..D()

; ** note the overloaded invocation operator comprising two period characters “..”

; ** accessing the original member method of the class

END

#ENDCLASS DERIVED

PROGRAM "OVERLOAD"

DERIVED O

SEGMENT 0

PRINT=1:"SEGMENT 0",TABV(1)

PRINT=1:"CALL O.A",TABV(1)

O.A

PRINT=1:"CALL O.B",TABV(1)

O.B

PRINT=1:"CALL O.C",TABV(1)

O.C

PRINT=1:"CALL O.D",TABV(1)

O.D

PRINT=1:"ESEG 0",TABV(1)

ESEG 0

END

Would produce, excluding the PRINT statements for reasons of clarity, the following equivalent ABAL

data declarations and code instructions. The redefinition of the object pointer parameters, received

by each of the member procedures, has also been excluded for clarity. Their structure is identical to

the appropriate global redefinition.

PROGRAM “EXAMPLE”

;** derived class instance

PTR O$=72

FIELD=M, O

DCL ONE$=36

DCL TWO$=36

;** class one method vectors

FIELD=M, ONE

DCL PROC FA

PTR PFA

DCL PROC FB

OPEN ABAL Language Reference Version 5.1t

66

PTR PFB

;** class one method vectors

FIELD=M, TWO

DCL PROC FC

PTR PFC

DCL PROC FD

PTR PFD

;** derived class overloaded method vectors

FIELD=M, FB

DCL PROC OFB

PTR OPFB$=72

FIELD=M, FD

DCL PROC OFD

PTR OPFB$=72

FIELD=M

;** procedures for methods of CLASS ONE

PROC ONE_I(PTR O$=36) :: CALL (FA)(PFA) :: CALL (FB)(PFB) :: ENDPROC

PROC ONE_A(PTR O$=36) :: ENDPROC

PROC ONE_B(PTR O$=36) :: CALL (FA)(PFA) :: ENDPROC

;** procedures for methods of CLASS TWO

PROC TWO_I(PTR O$=36) :: CALL (FC)(PFC) :: CALL (FD)(PFD) :: ENDPROC

PROC TWO_C(PTR O$=36) :: CALL (FD)(PFD) :: ENDPROC

PROC TWO_D(PTR O$=36) :: ENDPROC

;** procedures for methods of CLASS DERIVED

; ** note the effective and formal bridging between the sub objects made possible with the multiple inheritance

PROC DERIVED_B(PTR O$=72) :: CALL (OFA)(OPFA) :: CALL (FC)(PFC) :: ENDPROC

; ** note the use of the direct procedure call with the nested member object here, resulting from the use of the

PROC DERIVED_D(PTR O$=72) :: CALL TWO_D (ONE) :: ENDPROC

; ** overloaded invocation operator, “..”, instead of an indirection using the procedure and object pointers

SEGMENT 0

;** allocation of the object container

CREATE D

;** construction of CLASS ONE

PFA = ALIAS(ONE)

OPEN ABAL Language Reference Version 5.1t

67

FA = PROC PTR ONE_A

PFB = ALIAS(ONE)

FB = PROC PTR ONE_B

CALL ONE_I(ONE)

;** construction of CLASS TWO

PFC = ALIAS(TWO)

FC = PROC PTR TWO _C

PFB = ALIAS(TWO)

FB = PROC PTR TWO _C

CALL TWO_I(TWO)

;** construction of CLASS DERIVED

POFB = ALIAS(O)

OFB = PROC PTR DERIVED_B

POFD = ALIAS(O)

OFD = PROC PTR DERIVED_D

;** invocation of the interface methods

CALL (FA)(PFA)

CALL (OFB)(POFB)

CALL (FC)(PFC)

CALL (OFD)(POFC)

ESEG 0

END

The execution of the above program, with the original PRINT statements included, would give the

following screen output.

CONSTRUCTION ONE

-ONE.I

-ONE.A

-ONE.B

-ONE.A

CONSTRUCTION TWO

-TWO.I

-TWO.C

-TWO.D

-TWO.D

SEGMENT 0

CALL O.A

-ONE.A

OPEN ABAL Language Reference Version 5.1t

68

CALL O.B

-DERIVED.B

-ONE.A

-TWO.C

-DERIVED.D

-TWO.D

CALL O.C

-TWO.C

-DERIVED.D

-TWO.D

CALL O.D

-DERIVED.D

-TWO.D

ESEG 0

In the preceding example it should be noted that the size and value of the object pointer component

of the method vectors is initialised to point to its parenting object. In the case of the base component

TWO this pointer would continue to point to the base member object TWO and not to the parenting

object DERIVED until the construction of the overloaded method pointers of the DERIVED class

effectively repoints the object pointer component of the method vectors of B and D to the parenting

object DERIVED. The same object pointer component selection is performed for all virtual and

overloaded method invocation instructions with the result of changing the parent object pointer

depending on the level of derivation.

The perfect comprehension of the mechanisms involved, in this exhaustive example of multiple

inheritance virtual method overloading, is essential for the successful use of these object-oriented

techniques in a real-world application situation.

POINTER
When OVERLAY, FUNCTION or USER FUNCTION method statement includes the POINTER keyword,

the corresponding INDIRECT, VIRTUAL or OVERLOAD construction will be generated without being

attached to any ABAL SEGMENT, PROC or USER during construction phase of the object life cycle. The

resulting pointer variable may be used to point to any signature compatible METHOD and to allow

indirect access to the method by all pointer member invocation statements for corresponding

member method pointer.

The following example demonstrates the declaration, initialisation, and use of METHOD POINTER

members for the invocation of member methods.

#CLASS EXAMPLE

PUBLIC VIRTUAL FUNCTION POINTER DISPLAY(X%,Y%,MSG$)

PUBLIC VIRTUAL FUNCTION POINTER ANOTHER(X%,Y%,MSG$)

PRIVATE FUNCTION ONE:(X%,Y%,MSG$)

 PRINT=1:TAB(X,Y),MSG

END

PRIVATE FUNCTION TWO:(X%,Y%,MSG$)

OPEN ABAL Language Reference Version 5.1t

69

 PRINT=1:MSG,TABV(1)

END

PUBLIC INLINE CONSTRUCTOR INITIALISE:

 CREATE DISPLAY(ONE)

 CREATE ANOTHER(TWO)

END

#ENDCLASS EXAMPLE

PROGRAM "POINTER"

EXAMPLE E

SEGMENT 0

E.DISPLAY (1,2,"HELLO")

E.ANOTHER (3,4,"BONJOUR")

ESEG 0

END

Translation and execution of the preceding example will produce the following screen output.

HELLO BONJOUR

STRICT
The keyword STRICT, when associated with a METHOD definition activates the POLYMORPHIC nature

of the METHOD identifier and allowing definition of multiple methods of the same name but with

differing call and return signatures. The actual method will be selected during invocation statement

as defined by the number and nature of the parameters provided in the statement.

The following example shows how this can be useful in providing multiple construction signatures

allowing a variety of parameter combinations to be offered.

#CLASS EXAMPLE

PRIVATE DCL VALUE%

PRIVATE DCL MESSAGE$

PUBLIC STRICT INLINE CONSTRUCTOR INIT:(I%, S$)

 VALUE = I

 MESSAGE = S

END

PUBLIC STRICT INLINE CONSTRUCTOR INIT:(I%)

 INIT(I,"DEFAULT")

END

PUBLIC STRICT INLINE CONSTRUCTOR INIT:(S$)

OPEN ABAL Language Reference Version 5.1t

70

 INIT(1,S)

END

PUBLIC STRICT INLINE CONSTRUCTOR INIT:

 INIT(1,"DEFAULT")

END

PUBLIC STRICT INLINE DESTRUCTOR TERMINATE:(I%, S$)

END

PUBLIC STRICT INLINE DESTRUCTOR TERMINATE:(I%)

END

PUBLIC STRICT INLINE DESTRUCTOR TERMINATE: :(S$)

END

PUBLIC STRICT INLINE DESTRUCTOR TERMINATE:

END

PUBLIC INLINE DISPLAY:

 PRINT=1:(E,X,$,/1),VALUE,MESSAGE

END

#ENDCLASS EXAMPLE

PROGRAM "STRICT"

EXAMPLE A

EXAMPLE B(5)

EXAMPLE C("STRING")

EXAMPLE D(7,"BOTH")

SEGMENT 0

A.DISPLAY

B.DISPLAY

C.DISPLAY

D.DISPLAY

ESEG 0

END

Execution, after translation, of the above program example would give the following screen output.

 1 DEFAULT

 5 DEFAULT

 1 STRING

 7 BOTH

 1 DEFAULT

OPEN ABAL Language Reference Version 5.1t

71

In the above example of use of the STRICT keyword, it should be noticed that the complexity of the

signature is to be declared in decreasing order. The signature with the most parameters should be

declared first and the signature with the least, or none, should be declared last. This is very important

for the correct operation of the polymorphic alternative function selection mechanisms.

Furthermore, when destruction is also described, a destructor of identical signature must be declared,

corresponding to each of the polymorphic constructors, to ensure that the fault tolerance and

exception handling mechanisms are perfectly symmetrical with respect to their construction and

destruction phases.

RELAX
This optional keyword is the counterpart of the STRICT keyword and can be used to explicitly signal a

non-polymorphic method that may not define alternative call and return signatures. This is the default

nature of any method, with respect to polymorphism, when the STRICT keyword has NOT been

specified.

COMETHODS
The following keywords are used to declare a special type of METHOD that is used in conjunction with

another hosting METHOD of the same CLASS. Methods of this type can only be declared as of INLINE

type, since they are to be used in conditional clauses, error trapping and event detection constructions

before, after or around the instructions of the hosting method. The hosting method will reference the

COMETHOD via the use of a LOCAL statement, as will be seen in the following examples of each

individual COMETHOD type.

EXCEPTION
An EXCEPTION method allows ERROR processing to be named and organised and associated with all

other method definitions through LOCAL EXCEPTION statements. When a LOCAL EXCEPTON statement

is added to a METHOD body, the corresponding EXCEPTION method will be developed, around the

collection of ABAL++ instructions of the hosting METHOD, it will provide a powerful and automated

ERROR catching construction allowing fault tolerant operation.

The following example shows the ABAL++ class declaration and instantiation of an EXCEPTION method

usage example.

#CLASS EXAMPLE

DCL V%(2)

PRIVATE EXCEPTION catcher:

 PRINT=1: (“an error occurred”,X,E,/1),catcher

 THROW catcher

END

PUBLIC CONSTRUCTOR FUNCTION initialisaton:

 LOCAL EXCEPTION catcher

 PRINT=1: “Force a variable bounds error”,TABV(1)

 V(0) = 0

END

OPEN ABAL Language Reference Version 5.1t

72

#ENDCLASS EXAMPLE

PROGRAM “EXAMPLE”

EXAMPLE E

END

The following examples shows the standard ABAL instructions describing the way in which the ERROR

trap, in the PROCEDURE generated for the CONSTRUCTOR FUNCTION, will be declared.

PROC EXAMPLE_INITIALIZATION(PTR O$)

 FIELD=M,O

 DCL V%(1)

 FIELD=M

 DCL CATCHER%

 ENDLOC

 ON LOCAL ERROR GOTO &CATCHER, CATCHER

 DO

 PRINT=1: “Force a variable bounds error”,TABV(1)

 V(0) = 0

 BREAK

&CATCHER

 PRINT=1: (“an error occurred”,X,E,/1),catcher

 ON LOCAL ERROR ABORT

 ERROR CATCHER

 LOOP

ENDPROC

INVARIANT
An INVARIANT method allows parallel condition processing to be named and organised and associated

with any other method definitions through LOCAL INVARIANT statements. When a LOCAL INVARIANT

statement is added to a METHOD body, the corresponding INVARIANT method will be prior to the

collection of ABAL++ instructions of the hosting METHOD, but within the same contextual scope, and

will provide a powerful and automated logical fault detection mechanism in addition to standard error

processing.

The following program shows the trivial use of an invariant to detect and display even numbers inside

a parent method containing a FOR/NEXT loop.

#CLASS EXAMPLE

PRIVATE DCL i%

PRIVATE INVARIANT even: ((i and 1) = 0)

DO

OPEN ABAL Language Reference Version 5.1t

73

 PRINT=1:i

END

PUBLIC OVERLAY METHOD operation:

 LOCAL INVARIANT even

 FOR I = 1 to 256

 NEXT I

END

#ENDCLASS EXAMPLE

PROGRAM "INVARIANT"

EXAMPLE E

SEGMENT 0

 E.operation

ESEG 0

END

The conditional expression must be a well-formed, left, and right brace encapsulated condition for the

implicit ON EVENT instruction. It may start on a new line or on the same line as the method

declaration, but in the latter case must be separated from the method name terminating colon by

white space. The conditional expression must be followed, on its own new line, by the nature of the

EVENT body, either DO, for multiple entry, or THEN for single entry invariants. Following the event

body nature, will be the instructions of the event body, that are to be performed whenever the

invariant evaluates to TRUE. The end of the INVARIANT method block signals the end of the INVARIANT

and shall be terminated when required by an implicit END EVENT. The instructions of the body of the

hosting method will then be processed and then the ensemble will be terminated by an EVENT OFF

instruction prior to exit from the hosting method. In accordance with these rules, the preceding

example of an INVARIANT method would be developed in the SEGMENT generated for the OVERLAY

METHOD as shown below.

SEGMENT operation

 ON EVENT ((I AND 1) = 0)

 DO

 PRINT=1:i

 END EVENT

 FOR I = 1 to 256

 NEXT i

 EVENT OFF

 RET.SEG

ESEG operation

OPEN ABAL Language Reference Version 5.1t

74

PRECONDITION
A PRECONDITION method allows entry condition processing to be named and organised and

associated with any other method definitions through LOCAL PRECONDITION statements. When a

LOCAL PRECONDITION statement is added to a METHOD body, the corresponding PRECONDITION

method will be developed prior to the invocation of the hosting METHOD which will only be performed

if the precondition is deemed to be true.

The following program demonstrates the trivial use of a precondition that will only allow display of a

class member value if is found to be an even number.

#CLASS EXAMPLE

PRIVATE DCL I%

PRIVATE PRECONDITION even:

((I and 1) = 0)

END

PRIVATE ROUTINE METHOD display:

 LOCAL PRECONDITION even

 PRINT=1:i

END

PUBLIC OVERLAY METHOD operation:

 FOR I = 1 to 256

 display

 NEXT I

END

#ENDCLASS EXAMPLE

PROGRAM "INVARIANT"

EXAMPLE E

SEGMENT 0

 E.operation

ESEG 0

END

POSTCONDITION
A POSTCONDITION method allows exit condition processing to be named and organised and

associated with any other method definitions through LOCAL POSTCONDITION statements. When a

LOCAL POSTCONDITION statement is added to a METHOD body, the corresponding POSTCONDITION

method will be developed after the return from the invocation of the hosting METHOD.

The following program demonstrates a trivial example using a POSTCONDITION to detect event values

on return from its hosting method.

#CLASS EXAMPLE

OPEN ABAL Language Reference Version 5.1t

75

PRIVATE DCL I%

PRIVATE POSTCONDITION even: ((I and 1) = 0)

 PRINT=1:" even"

END

PRIVATE ROUTINE METHOD display:

 LOCAL POSTCONDITION even

 PRINT=1:i

END

PUBLIC OVERLAY METHOD operation:

 FOR I = 1 to 256

 display

 NEXT I

END

#ENDCLASS EXAMPLE

PROGRAM "INVARIANT"

EXAMPLE E

SEGMENT 0

 E.operation

ESEG 0

END

OPEN ABAL Language Reference Version 5.1t

76

Environment Variables

OPEN ABAL Language Reference Version 5.1t

77

OTR Pragmas

TOKENSIZE
This pragma indicates the maximum length of naming tokens for variables, constants, and procedures.

#pragma tokensize <integer expression>

Naming tokens that are longer than the specified length will be silently truncated.

KEYWORD
This pragma directs the translator to allow or ignore the customary nature of the indicated keyword

allowing the keyword to be used as a naming token.

#pragma keyword <keyword token> [ON | OFF]

LOCAL_CONSTANT
This pragma directive instructs the translator to allow or inhibit the use of a local constant table for
the storage of all implicit constants encountered during the translation of subsequent code blocks.

#pragma local_constant [ON | OFF]

ECHO_ON
This pragma directive activates subsequent source tracing as described by the integer expression.

#pragma echo_on <integer expression>

ECHO_OFF
This pragma directive inhibits subsequent source tracing.

#pragma echo_off

ECHO
This pragma directive activates or inhibits subsequent target tracing as described by the integer
expression.

#pragma echo <integer expression>

HEAP
This pragma directive is identical to the traditional #HEAP directive and allows the size of the HEAP
memory of the program to be defined.

#pragma heap <integer expression>

FILES
This pragma directive is identical to the traditional #FILES directive and allows the size of the FILE
ASSING table of the program to be defined.

#pragma files <integer expression>

STACK
This pragma directive is identical to the traditional #STACK directive and allows the depth of the BYTE,
WORD, and POINTER stacks of the program to be defined.
#pragma stack <integer expression>

OPEN ABAL Language Reference Version 5.1t

78

MEM
This pragma directive is identical to the traditional #MEM directive and allows the size in bytes of the
temporary expression storage buffer of the program to be defined.

#pragma mem <integer expression>

PAGENUMBER
This pragma directive sets the current listing page number to the value indicated by the integer
expression.

#pragma pagenumber <integer expression>

APLUS
This pragma directive instructs the ABAL translator to activate or inhibit the implicit public or private
nature of common statements.

#pragma aplus [ON | OFF]

KEYBOARD_FLUSH
This pragma directive instructs the translator to indicate that the keyboard buffer is to be flushed on

program exit, or not.

#pragma keyboard_flush [ON | OFF]

ENHANCED
This pragma directive instructs the translator concerning object translation enhancements.

#pragma enhanced <keyword> [ON | OFF]

The following enhancements are possible in this version of the OPENABAL Object Translator.

ERRORS
In normal execution conditions, Procedure and Segment code blocks will report any un-trapped errors

through the standard system log in /var/log/syslog using the standard system SYSLOG relay to ensure

that this is possible no matter which current user. This has replaced the previous use of the error

logging file in the /tmp directory which caused core dumps and exceptions when unauthorised users

attempt to write to the log file. When this enhancement is activated, a default ON LOCAL ERROR

X_CATCHER, &LABEL error catching construction, with an associated ON LOCAL ERROR ABORT and

ERROR X_CATCHER instructions, will be generated for all procedure and segment code blocks. This

means that any errors encountered will be raised through the nested procedure and segment stack to

be presented to an eventual nested error handler. If no nested error handler is encountered, then the

error will be reported through the SYSLOG channel.

OPTIMISE
This pragma directive instructs the translator concerning which optimisations are to be performed or

inhibited.

#pragma optimise <keyword> [ON | OFF]

SEMAPHORES
This pragma directive defines the number of ABAL semaphores to be declared for the program.

#pragma semaphores <integer expression>

OPEN ABAL Language Reference Version 5.1t

79

SWAP_BUFFERS
This pragma directive defines the maximum number of SWAP buffers to be used by the translator
during translation of the program.

#pragma swap_buffers <integer expression>

TRACE
This pragma directive instructs the ABAL translator to activate or inhibit subsequent translation
tracing.

#pragma trace [ON | OFF]

ANNOUNCE
This pragma directive instructs the ABAL translator, to generate ABAL PAUSE instructions announcing
the entry into the code region described by the list of code bock types.

#pragma announce [[constructor | destructor | exception | common | routine | function |
overlay | inline | ALL] [ON | OFF] ,]

The resulting expression may be inclusive or exclusive by first specifying ALL ON or ALL OFF and then
activating or disactivating the code block types of interest or to be excluded.

IGNORE_CASE
The pragma determines if the translator is to differentiate between uppercase and lowercase tokens.
By default, uppercase and lowercase tokens, are treated as identical.

#pragma ignore_case [ON | OFF]

LIST
This pragma directive instructs the ABAL translator to activate or inhibit subsequent translation listing.

#pragma list [ON | OFF]

PRIORITY
This pragma directive instructs the ABAL translator to activate or inhibit subsequent use of the
translation priority option.

#pragma priority [ON | OFF]

WARNINGS
This pragma indicates which warnings are to be raised or inhibited by the translator when they are
encountered.

#pragma warnings [ALL] [ON | OFF] [warning number, warning number]

EDITOR
This pragma directive instructs the translator of the name of the text editor to be used when
performing automated error tracing.

#pragma editor <filename>

ERRORS
This pragma directive instructs the translator to abandon translation if the upper error limit, indicated
by the integer expression, here is reached.

OPEN ABAL Language Reference Version 5.1t

80

#pragma errors <integer expression>

THROW
 This pragma directive instructs the translator to use the value provided by the integer expression for
implicit THROW instructions within the subsequent code blocks.

#pragma throw <integer expression>

SWAPSIZE
This pragma directive defines the maximum size of SWAP buffers to be used by the translator during
translation of the program.

#pragma swapsize <integer expression>

PAGESIZE
This pragma directive sets the listing page size to the number of lines indicated by the integer
expression.

#pragma pagesize <integer expression>

DEFINE
This pragma directive defines a program specific PRAGMA token to be accepted by the translator
during subsequent source translation.

#pragma define keyword

UNDEF
This pragma directive cancels a previously defined program specific PRAGMA token. Subsequent use
of the PRAGMA TOKEN expression will be signaled as an error.

#pragma undef keyword

OUTPUT
This pragma directive instructs the translator of the nature of the subsequent code to be output by
the program production backed.

#pragma output [C | CPLUS | JAVA | JPLUS]

LABELSIZE
This pragma indicates the maximum length of label tokens.

#pragma labelsize <integer expression>

STYLE
Defines the global stylesheet to be used by the program by default.

#pragma style <filename>

INITLOCAL
Directs the translator to include or inhibit the generation of ABAL INITLOCAL instructions as the first
instruction of a PROC or SEGMENT code block.

#pragma initlocal [ON | OFF]

OPEN ABAL Language Reference Version 5.1t

81

NOFLUSH
This pragma directive instructs the translator to indicate that the standard one byte keyboard flush

on program exit is to be respected, or not.

#pragma noflush [ON | OFF]

NOINPUT
This pragma directive instructs the translator to inhibit the use of ASK, PAUSE and OP instructions to

ensure that the PROGRAM cannot perform USER input.

#pragma noinput [ON | OFF]

EXPORT
This pragma directive instructs the translator to export all subsequent procedure names such that

they become visible for use by the dynamic library function call back mechanisms.

#pragma export [ON | OFF]

CHARSET
This pragma directive instructs the translator to expect the specified character set to be used.

#pragma charset [ABAL | ANSI | UTF8 | UTF16]

OPEN ABAL Language Reference Version 5.1t

82

DIFFERENCES
This section of the OPEN ABAL Language Reference outlines the known differences between ABAL64

and the previous architectural version ABAL32 describing the effects, the reasons, and how they are

to be handled.

ABAL POINTER SIZE
In ABAL 2 (16bit) and ABAL 3 (32bit) the storage size of ABAL PTR variables was 5 bytes, comprising a

leading POINTER TYPE byte and then the 32bit system pointer. In ABAL 64 the size of an ABAL PTR

variable has been increased to 9 bytes, comprising a leading POINTER TYPE byte and then the 64bit

system pointer. This decision was taken based on ensuring the maximum level of performance

efficiency and robustness of the resulting ABAL Application. ABAL Sources are to be retranslated to

ABAL64 programs for execution using the OPEN ABAL 64 Executer.

REGISTER INTEGERS
When integer values are loaded into a REGISTER of the ABAL virtual machine they become the same

size of the ABAL PROGRAM word size. However, in previous versions this was then limited to 16 bits,

for historic compatibility reasons, unless a call had been made to set EVENT (998) to 1. This has been

inversed. A call to set EVENT (998) to 0 is now required to force integers to 16 bits otherwise, in ABAL

64, they will be preserved as the natural integer size of the machine.

CLASS_NAME, OBJECT_NAME and METHOD_NAME
These pseudo functions return the string value of the corresponding CLASS, OBJECT or METHOD name

or an empty string if not inside a CLASS, OBJECT or METHOD.

OPEN ABAL Language Reference Version 5.1t

83

ANNEXE 1

The ABAL CHARACTER Set
The following table shows the standard ABAL character set.

OPEN ABAL Language Reference Version 5.1t

84

ANNEXE 2

An XML File Copier
The following program, comprising the files xml.as and xml-example.as, demonstrates the use of the

XML File Access instructions.

Xml.as
< constants for abal xml instruction >
Const XML_READ%=/0060
Const XML_READ_VERSION%=/0061
Const XML_READ_CHARSET%=/0062
Const XML_READ_STYLE%=/0063
Const XML_WRITE%=/00A0
Const XML_WRITE_VERSION%=/00A1
Const XML_WRITE_CHARSET%=/00A2
Const XML_WRITE_STYLE%=/00A3
Const XML_OPEN%=1
Const XML_NAME%=2
Const XML_VALUE%=3
Const XML_CLOSE%=4
Const XML_TEXT%=5
< eof >

Xml-example.as

program "xmlparser"
#include "xml.as"
dcl e%
dcl started%
dcl input$=1024
dcl output$=1024
dcl version$=64
dcl charset$=64
dcl style$=1024
dcl element$=256
dcl buffer$=2048
field=m,buffer
 dcl type%
 dcl length%
 dcl value$=2044
field=m
segment 0
 print=1:($,/1),"START ABAL XML PARSER TEST"
 input = "input.xml"
 Assign=1,input,XML:next,e
 Open=1:Next,e
 if (e = 0)
 print=1:($,/1),"OPEN XML : OK"
 output = "output.xml"
 Assign=2,output,XML,WR:next,e
 Cfile=2:Next,e
 if (e = 0)
 print=1:($,/1),"CREATE XML : OK"
 Read=1,XML_READ,0:Next,e,buffer,Len(buffer)
 While (e = 0)
 select (type)
 case XML_OPEN
 if (started = 0)

OPEN ABAL Language Reference Version 5.1t

85

 Read=1,XML_READ_VERSION,0:Next,e,version,len(version)
 print=1:($,X,$,/1),"READ XML VERSION = ",version
 Write=2,XML_WRITE_VERSION,0:Next,e,version,len$(version)
 Read=1,XML_READ_CHARSET,0:Next,e,charset,len(charset)
 print=1:($,X,$,/1),"READ XML CHARSET = ",charset
 Write=2,XML_WRITE_CHARSET,0:Next,e,charset,len$(charset)
 Read=1,XML_READ_STYLE,0:Next,e,style,len(style)
 print=1:($,X,$,/1),"READ XML STYLE = ",style
 Write=2,XML_WRITE_STYLE,0:Next,e,style,len$(style)
 started = 1
 endif
 print=1:($,X,$,/1),"READ XML : OPEN ELEMENT =",value
 element = value
 Write=2,XML_WRITE,0:Next,e,buffer,Len(buffer)
 case XML_NAME
 print=1:($,X,$,/1),"READ XML : ATB NAME =",value
 Write=2,XML_WRITE,0:Next,e,buffer,length+4
 case XML_VALUE
 print=1:($,X,$,/1),"READ XML : ATB VALUE =",value
 Write=2,XML_WRITE,0:Next,e,buffer,length+4
 case XML_CLOSE
 print=1:($,X,$,/1),"READ XML : CLOSE ELEMENT =",value
 Write=2,XML_WRITE,0:Next,e,buffer,length+4
 case XML_TEXT
 print=1:($,X,$,/1),"READ XML : ELEMENT TEXT =",value
 Write=2,XML_WRITE,0:Next,e,buffer,length+4
 endsel
 buffer = " " :: type = 0 :: length = 0
 Read=1,/60,0:Next,e,buffer,Len(buffer)
 wend
 Close=2:Next,e
 Close=1:Next,e
 else
 print=1:($,X,$,/1),"CREATE XML : FAIL",output
 endif
 else
 print=1:($,X,$,/1),"OPEN XML : FAIL ",input
 endif
 print=1:($,/1),"END ABAL XML PARSER TEST"
eseg 0
end

OPEN ABAL Language Reference Version 5.1t

86

ANNEXE 3

A JSON File Copier
The following program, comprising the files json.as and json-example.as, demonstrates the use of the

ABAL JSON Dynamic Library JSON File Access instructions.

Json.as
< JSON CONSTANTS for ABAL JSON LIBRARY >
const JSON_NULL%=0
const JSON_NAME%=1
const JSON_VALUE%=2
const JSON_STRUCT%=3
const JSON_ARRAY%=4
const JSON_CLOSE%=5
const JSON_ERROR%=6
< EOF >

Json-example.as

#user "abaljson.def"
program "jsonparser"
#include "json.as"
dcl type%
dcl input%
dcl output%
dcl filename$=1024
dcl newname$=1024
dcl buffer$=2048
segment 0
 print=1:($,/1),"START ABAL JSON PARSER TEST"
 filename = "input.json"
 input = openjson(filename,len$(filename))
 newname = "output.json"
 output = createjson(newname,len$(newname))
 if (input > 0)
 print=1:($,/1),"OPEN JSON : OK"
 if (output > 0)
 print=1:($,/1),"CREATE JSON : OK"
 else
 print=1:($,/1),"CREATE JSON : FAIL"
 endif
 while (input > 0)

 type = readjson(input,buffer,len(buffer))
 select (type)
 case JSON_NULL
 print=1:($,/1),"READ JSON : NULL"
 input = closejson(input)
 output = closejson(output)
 print=1:($,/1),"CLOSE JSON : OK"
 input = 0
 case JSON_NAME
 print=1:($,X,$,/1),"READ JSON : NAME =",buffer
 type = writejson(output,type,buffer,len$(buffer));
 case JSON_VALUE

OPEN ABAL Language Reference Version 5.1t

87

 print=1:($,X,$,/1),"READ JSON : VALUE =",buffer
 type = writejson(output,type,buffer,len$(buffer));
 case JSON_STRUCT
 print=1:($,/1),"READ JSON : STRUCT"
 type = writejson(output,type,buffer,len$(buffer));
 case JSON_ARRAY
 print=1:($,/1),"READ JSON : ARRAY"
 type = writejson(output,type,buffer,len$(buffer));
 case JSON_CLOSE
 print=1:($,/1),"READ JSON : CLOSE"
 type = writejson(output,type,buffer,len$(buffer));
 case JSON_ERROR
 print=1:($,/1),"READ JSON : ERROR"
 endsel
 wend
 else
 print=1:($,/1),"OPEN JSON : FAIL "
 endif
 print=1:($,/1),"END ABAL JSON PARSER TEST"
eseg 0
end

OPEN ABAL Language Reference Version 5.1t

88

ANNEXE 4

A PARQUET File Example
The following snippet of ABAL source shows the values of the PARQUET data type constants.

< PARQUET CONSTANTS for ABAL PARQUET LIBRARY >
const PARQUET_INT8%=1
const PARQUET_INT16%=2
const PARQUET_INT32%=3
const PARQUET_INT64%=4
const PARQUET_FLOAT%=5
const PARQUET_DOUBLE%=6
Const PARQUET_STRING%=7
< EOF >

The following ABAL sources shows a PARQUET file writer and reader example.

#user "abalparquet.def"
Program "AbalParquet"
#include "parquet.as"
Dcl handle%
Dcl err%
Dcl filename$=1024
Dcl buffer$=8192
Dcl n%
Dcl row&
Segment 0
 Print=1:Tab(1,1),"Abal Parquet Library Tester"
 filename = "/tmp/abal.parquet"
 Print=1:Tab(1,3),"Test of File Writer"
 ;** create the parquet file
 handle = ParquetCreate(filename,len$(filename))
 if (handle > 0)
 Print=1:Tab(1,4),("Parquet Create(",$,") : ",$),filename,conv$(handle)
 ;** create the file structure
 err = ParquetColumn(handle,parquet_int8,"byte",4,1,0)
 err = ParquetColumn(handle,parquet_int16,"word",4,2,0)
 err = ParquetColumn(handle,parquet_int32,"long",4,4,0)
 err = ParquetColumn(handle,parquet_int64,"huge",4,8,0)
 err = ParquetColumn(handle,parquet_float,"float",5,4,0)
 err = ParquetColumn(handle,parquet_double,"double",6,8,0)
 err = ParquetColumn(handle,parquet_string,"string",6,255,0)
 ;** write 1000 rows
 for row = 1 to 1000
 n = row
 buffer = Print(("(",$,",",$,",",$,",",$,",",$,",",$,",'A",HZ8,"')"),
conv$(n), conv$(n), conv$(n), conv$(n), conv$(n), conv$(n),n)
 err = ParquetWrite(handle,buffer,len$(buffer))
 Print=1:Tab(1,5),("Parquet
Write(",$,",",$,")"),Conv$(row),buffer
 next row
 handle = ParquetFlush(handle)
 Print=1:Tab(1,6),("Parquet Flush (",$,") : ",$),filename,conv$(handle)
 Endif
 Print=1:Tab(1,8),"Test of File Reader"
 ;** read back the parquet data
 handle = ParquetOpen(filename,len$(filename))
 if (handle > 0)
 Print=1:Tab(1,9),("Parquet Open (",$,") : ",$),filename,conv$(handle)
 Print=1:Tab(1,10),("Parquet Rows (",$,") :
",$),filename,conv$(ParquetRows(handle))
 Print=1:Tab(1,11),("Parquet Cols (",$,") :
",$),filename,conv$(ParquetColumns(handle))
 For row = 1 to ParquetRows(handle)
 if (ParquetRead(handle,row,buffer,len(buffer)) <> 0)
 Print=1:Tab(1,12),("Parquet Read
(",$,",",$,")"),Conv$(row),buffer
 else :: break
 endif
 Next row
 handle = ParquetClose(handle)
 Print=1:Tab(1,13),("Parquet Close (",$,") : ",$),filename,conv$(handle)
 Endif
 Print=1:Tab(1,15),"Abal Parquet Library Tester"
Eseg 0
End

